Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T01:29:37.589Z Has data issue: false hasContentIssue false

Microbiota associated with pollen, bee bread, larvae and adults of solitary bee Osmia cornuta (Hymenoptera: Megachilidae)

Published online by Cambridge University Press:  21 April 2015

J. Lozo*
Affiliation:
Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia University of Belgrade – Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
T. Berić
Affiliation:
Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
A. Terzić-Vidojević
Affiliation:
University of Belgrade – Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
S. Stanković
Affiliation:
Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
D. Fira
Affiliation:
Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
L. Stanisavljević
Affiliation:
Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
*
*Author for correspondence Tel: +381 64 823 79 62 E-mail: [email protected]

Abstract

Using cultivation-dependant method, we isolated 184 strains from fresh and old bee bread, pollen, larvae and adults of solitary bee Osmia cornuta. The 16S rDNA sequencing of 79 selected isolates gave the final species-specific identification of strains. Phylogenetic analysis indicated that microbiota isolated from five different sources were represented with 29 species within three different phyla, Firmicutes with 25 species, Actinobacteria with only one species and Proteobacteria with three species of Enterobacteriaceae. Bacterial biodiversity presented with Shannon–Wiener index (H′) was highest in the alimentary tract of adults and old bee bread (H′ = 2.43 and H′ = 2.53, respectively) and in the same time no dominance of any species was scored. On the contrary, results obtained for Simpson index (D) showed that in pollen samples the dominant species was Pantoea agglomerans (D = 0.42) while in fresh bee bread that was Staphylococcus sp. (D = 0.27). We assume that microbial diversity detected in the tested samples of solitary bee O. cornuta probably come from environment.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Audisio, C.M., Torres, M.J., Sabaté, D.C., Ibarguren, C. & Apella, M.C. (2011) Properties of different lactic acid bacteria isolated from Apis mellifera L. bee-gut. Microbiological Research 166, 113.Google Scholar
Bosch, J. & Kemp, W.P. (2002) Developing and establishing bee species as crop pollinators: the example of Osmia spp. (Hymenoptera: Megachilidae) and fruit trees. Bulletin of Entomological Research 92, 316.Google Scholar
Brittain, C., Williams, N., Kremen, C. & Klein, A.M. (2013) Synergistic effects of non-Apis bees and honey bees for pollination services. Proceedings of the Royal Society B 280, 20122767. http://dx.doi.org/10.1098/rspb.2012.2767.Google Scholar
Brochier, C., Bapteste, E., Moreira, D. & Philippe, H. (2002) Eubacterial phylogeny based on translational apparatus proteins. Trends in Genetics 18, 15.Google Scholar
Cox-Foster, D.L., Conlan, S., Holmes, E.C., Palacios, G., Evans, J.D., Moran, N.A., Quan, P.L., Briese, T., Hornig, M., Geiser, D.M., Martinson, V., van Engelsdorp, D., Kalkstein, A.L., Drysdale, A., Hui, J., Zhai, J., Cui, L., Hutchison, S.K., Simons, J.F., Egholm, M., Pettis, J.S. & Lipkin, W.I. (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318, 283287.Google Scholar
Endo, A., Futagawa-Endo, Y. & Dick, L.M.T. (2009) Isolation and characterization on fructophilic lactic acid bacteria from fructose-rich niches. Systematic and Applied Microbiology 32, 593600.Google Scholar
Engel, P., Martinson, V.G. & Morana, N.A. (2012) Functional diversity within the simple gut microbiota of the honey bee. Proceedings of the National Academy of Sciences of the United States of America 109, 1100211007.CrossRefGoogle ScholarPubMed
Haider, M., Dorn, S., Sedivy, C., & Müller, A. (2014) Phylogeny and floral hosts of a predominantly pollen generalist group of mason bees (Megachilidae: Osmiini). Biological Journal of the Linnaean Society 111, 7891. doi:10.1111/bij.12186.Google Scholar
Hopwood, D.A., Bibb, M.J., Chater, K.F., Kieser, T., Bruton, C.J., Kieser, H.M., Lydiate, D.J., Smith, C.P., Ward, J.M. & Schrempf, H. (1985) Genetic Manipulation of Streptomyces, A Laboratory Manual. Norwich, UK, The John Innes Foundation.Google Scholar
Jovcic, B., Begovic, J., Lozo, J., Topisirovic, L. & Kojic, M. (2009) Dynamic of sodium dodecyl sulfate utilization and antibiotic susceptibility of strain Pseudomonas sp. ATCC19151. Archives of Biological Sciences 61, 159165.Google Scholar
Keller, A., Grimmer, G. & Steffan-Dewenter, I. (2013) Diverse microbiota identified in whole intact Nest Chambers of the Red Mason Bee Osmia bicornis (Linnaeus 1758). PLoS ONE 8, e78296. doi:10.1371/journal.pone.0078296 Google Scholar
Kimura, M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111120.Google Scholar
Klein, A.-M., Vaissiere, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C. & Tscharntke, T. (2007) Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B 274, 303313.Google Scholar
Koch, H. & Schmid-Hempel, P. (2011) Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proceedings of the National Academy of Sciences of the United States of America 108, 1928819292.CrossRefGoogle ScholarPubMed
Koch, H., Cisarovsky, G. & Schmid-Hempel, P. (2012) Ecological effects on gut bacterial communities in wild bumble bee colonies. Journal of Animal Ecology 81, 12021210.Google Scholar
Krunić, M. & Stanisavljević, Lj. (2006 a) The Biology of European Orchard Bee Osmia cornuta (Latr.) (Hymenoptera: Megachilidae). Monograph Paper. Belgrade, Faculty of Biology – University of Belgrade, pp. 1138.Google Scholar
Krunić, M. & Stanisavljević, Lj. (2006 b) Augmentation of managed populations of Osmia cornuta (Latr.) and O. rufa (L.) (Hymenoptera: Megachilidae) in South-eastern Europe. European Journal of Entomology 103, 695697.Google Scholar
Krunić, M., Stanisavljević, Lj., Brajković, M., Tomanović, Ž. & Radović, I. (2001) Ecological studies of Osmia cornuta (Latr.) (Hymenoptera, Megachilidae) populations in Yugoslavia with special attention to their diapause. Acta Horticulturae 561, 297301.Google Scholar
Krunić, M., Stanisavljević, Lj., Pinzauti, M. & Felicioli, A. (2005) The accompanying fauna of Osmia cornuta and Osmia rufa and effective measures of protection. Bulletin of Insectology 59, 141152.Google Scholar
Martinson, V.G., Danforth, B.N., Minckley, R.L., Rueppell, O., Tingek, S. & Moran, N.A. (2011) A simple and distinctive microbiota associated with honey bees and bumble bees. Molecular Ecology 20, 619628.Google Scholar
Martinson, V.G., Moy, J. & Moran, N.A. (2012) Establishment of characteristic gut bacteria during development of the honeybee worker. Applied and Environmental Microbiology 78, 28302840.Google Scholar
Mattila, H.R., Rios, D., Walker-Sperling, V.E., Roeselers, G. & Newton, I.L.G. (2012) Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse. PLoS ONE 7, e32962. doi:10.1371/journal.pone.0032962.Google Scholar
McFrederick, Q.S., Wcislo, W.T., Taylor, D.R., Ishak, H.D., Dowd, S.E. & Mueller, U.G. (2012) Environment or kin: whence do bees obtain acidophilic bacteria? Molecular Ecology 21, 17541768.Google Scholar
Mohr, K.I. & Tebbe, C.C. (2006) Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environmental Microbiology 8, 258272.Google Scholar
Moll, R.M., Romoser, W.S., Modrakowski, M.C., Moncayo, A.C. & Lerdthusnee, K. (2001) Meconial peritrophic membranes and the fate of midgut bacteria during mosquito (Diptera: Culicidae) metamorphosis. Journal of Medical Entomology 38, 2932.Google Scholar
Mullin, C.A., Frazier, M., Frazier, J.L., Ashcraft, S., Simonds, R., Vanengelsdorp, D. & Pettis, J.S. (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS ONE 5, e9754.Google Scholar
Olofsson, T.C. & Vásquez, A. (2008) Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera . Current Microbiology 57, 356363.Google Scholar
Potts, S.G., Biesmeijer, J.C., Kremen, C., Neumann, P., Schweiger, O. & Kunin, W.E. (2010) Global pollinator declines: trends, impacts and drivers. Trends in Ecology and Evolution 25, 345353.Google Scholar
Ravoet, J., De Smet, L., Meeus, I., Smagghe, G., Wenseleers, T. & de Graaf, D.C. (2014) Widespread occurrence of honey bee pathogens in solitary bee. Journal of Invertebrate Pathology 122, 5558.CrossRefGoogle Scholar
Roulston, T.H. & Cane, J.H. (2000) Pollen nutritional content and digestibility for animals. Plant Systematic Evolution 222, 187209.Google Scholar
Sabaté, D.C., Gonzaléz, M.J., Porrini, M.P., Eguaras, M.J., Audisio, M.C. & Marioli, J.M. (2012) Synergistic effect of surfactin from Bacillus subtilis C4 and Achyrocline satureioides extracts on the viability of Paenibacillus larvae . World Journal of Microbiology and Biotechnology 28, 14151422.CrossRefGoogle ScholarPubMed
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 27252729.Google Scholar
Torchio, P.F., Asensio, E. & Thorp, R.W. (1987) Introduction of the European bee, Osmia cornuta, into California almond orchards (Hymenoptera, Megachilidae). Environmental Entomology 16, 664667.CrossRefGoogle Scholar