Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-22T18:51:02.721Z Has data issue: false hasContentIssue false

Kairomones from Euschistus heros egg masses and their potential use for Telenomus podisi parasitism improvement

Published online by Cambridge University Press:  08 May 2020

R. Tognon*
Affiliation:
Department of Crop Protection, PPG-Fitotecnia, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 7712, 91540-000 Porto Alegre, RS, Brazil
J. Sant'Ana
Affiliation:
Department of Crop Protection, PPG-Fitotecnia, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 7712, 91540-000 Porto Alegre, RS, Brazil
M. F. F. Michereff
Affiliation:
Genetic Resources and Biotechnology Laboratory (EMBRAPA/Cenargen), 70849-970, Brasília, DF, Brazil
R. A. Laumann
Affiliation:
Genetic Resources and Biotechnology Laboratory (EMBRAPA/Cenargen), 70849-970, Brasília, DF, Brazil
M. Borges
Affiliation:
Genetic Resources and Biotechnology Laboratory (EMBRAPA/Cenargen), 70849-970, Brasília, DF, Brazil
M. C. Blassioli-Moraes
Affiliation:
Genetic Resources and Biotechnology Laboratory (EMBRAPA/Cenargen), 70849-970, Brasília, DF, Brazil
L. R. Redaelli
Affiliation:
Department of Crop Protection, PPG-Fitotecnia, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 7712, 91540-000 Porto Alegre, RS, Brazil
*
Author for correspondence: R. Tognon, Email: [email protected]

Abstract

Telenomus podisi Ashmead (Hymenoptera: Scelionidae) is the most important egg parasitoid of Euschistus heros (Fabricius) (Hemiptera: Pentatomidae), and its successful parasitism is related to their searching ability to find suitable hosts under a complex chemical environment using host-reliable cues. Thus, the objective of this study was to elucidate chemical substances on the external layer of E. heros eggs and report its potential kairomonal activity on T. podisi. We tested female wasps in olfactometer system to synthetic compounds obtained from a chemical identification of E. heros egg masses. The synthetic blend was also evaluated in parasitism tests under laboratory and semi-field conditions. We identified 31 substances from egg surface extracts, including monoterpenes, aldehydes and alkanes. Among those compounds, a synthetic solution including camphene, β-pinene, limonene and benzaldehyde-induced chemotaxic behaviour on the wasps and increased the parasitism on E. heros eggs, either in laboratory or semi-field test, suggesting its potential use to T. podisi manipulation and parasitism improvement.

Type
Research Paper
Copyright
Copyright © The Author(s) 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aquino, MFS (2011) Estudo do comportamento de busca e seleção de hospedeiros dos parasitóides de ovos Trissolcus basalis e Telenomus podisi Hymenoptera: Scelionidae). 2011. 119f. Dissertação (Mestrado) – Programa de Pós-Graduação em Biologia Animal, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, 2011.Google Scholar
Arn, H, Toth, M and Priesner, E (1992) List of the Sex Pheromones of Lepidoptera and Related Attractants, 2nd Edn, Montfavet, France: International Organization for Biological Control.Google Scholar
Ayres, M, Ayres, M Jr, Ayres, DL and Santos, AAS (2007) BioEstat 5.0 aplicações estatísticas nas áreas da ciências bio-médicas. Belém, Brasil.Google Scholar
Bai, SX, Wang, ZY, He, KL, Wen, LP and Zhou, DR (2004) Olfactory response of Trichogramma ostriniae Pang et. Chen to kairomones from eggs and different stages of adult females of Ostrinia furcanalis (Guenee). Acta Entomologica Sinica 47, 4854.Google Scholar
Bin, F, Vinson, SB, Strand, MR, Colazza, S and Jones, WA (1993) Source of an egg kairomone for Trissolcus basalis, a parasitoid of Nezara viridula. Physiological Entomology 18, 715.CrossRefGoogle Scholar
Boo, KS and Yang, JP (2000) Kairomones used by Trichogramma chilonis to find Helicoverpa assulta eggs. Journal of Chemical Ecology 26, 359375.CrossRefGoogle Scholar
Borges, M and Aldrich, JR (1994) Estudos de semioquímicos para o manejo de Telenominae. Anais da Sociedade Entomológica do Brasil 23, 575577.Google Scholar
Borges, M, Costa, MLM, Sujii, ER, Cavalcanti, MDG, Redigolo, GF, Resck, IS and Vilela, EF (1999) Semiochemical and physical stimuli involved in host recognition by Telenomus podisi (Hymenoptera: Scelionidae) toward Euschistus heros (Heteroptera: Pentatomidae). Physiological Entomology 24, 227233.CrossRefGoogle Scholar
Borges, M, Laumann, RA, Silva, CCA, Moraes, MCB, Santos, HM and Ribeiro, DT (2006) Metodologias de criação e manejo de colônias de percevejos da soja (Hemiptera: Pentatomidae) para estudos de comportamento e ecologia química. EMBRAPA-CENARGEN, 2006. 180. (EMBRAPA-CENARGEN. Documentos, 182).Google Scholar
Bruce, TJA and Pickett, JA (2011) Perception of plant volatile blends by herbivorous insects finding the right mix. Phytochemistry 72, 16051611.CrossRefGoogle ScholarPubMed
Colazza, S, Mcelfresh, JS and Millar, JC (2004) Identification of volatile synomones, induced by Nezara viridula feeding and oviposition on bean spp., that attract the egg parasitoid Trissolcus basalis. Journal of Chemical Ecology 30, 945964.CrossRefGoogle ScholarPubMed
Colazza, S, Aquila, G, De Pasquale, C, Peri, E and Millar, JG (2007) The egg parasitoid Trissolcus basalis uses n-nonadecane, a cuticular hydrocarbon from its stink bug host Nezara viridula, to discriminate between female and male hosts. Journal of Chemical Ecology 33, 14051420.CrossRefGoogle ScholarPubMed
Colazza, S, Lo Bue, M, Lo Giudice, D and Peri, E (2009) The response of Trissolcus basalis to footprint contact kairomones from Nezara viridula females is mediated by leaf epicuticular waxes. Naturwissenschaften 96, 975981.CrossRefGoogle ScholarPubMed
Conti, E and Colazza, S (2012) Chemical ecology of egg parasitoids associated with true bugs. Psyche 2012, 111.Google Scholar
Conti, E, Jones, WA, Bin, F and Vinson, SB (1996) Physical and chemical factors involved in host recognition behavior of Anaphes iole Girault, an egg parasitoid of Lygus hesperus Knight (Hymenoptera: Mymaridae; Heteroptera: Miridae). Biological Control 7, 1016.CrossRefGoogle Scholar
Conti, E, Salerno, G, Bin, F, Williams, HJ and Vinson, SB (2003) Chemical cues from Murgantia histrionica eliciting host location and recognition in the egg parasitoid Trissolcus brochymenae. Journal of Chemical Ecology 29, 115130.CrossRefGoogle ScholarPubMed
Corrêa-Ferreira, BS and Moscardi, F (1995) Seasonal occurrence and host spectrum of egg parasitoids associated with soybean stink bugs. Biological Control 5, 196202.CrossRefGoogle Scholar
De Santis, F, Conti, E, Romani, R, Salerno, G, Parillo, F and Bin, F (2008) Colleterial glands of Sesamia nonagrioides As a source of the host recognition kairomone for the egg parasitoid Telenomus busseolae. Physiological Entomology 33, 716.CrossRefGoogle Scholar
Gibbs, AG (1998) Water-proofing properties of cuticular lipids. American Zoology 38, 471482.CrossRefGoogle Scholar
Howard, RW and Blomquist, GJ (2005) Ecological, behavioural, and biochemical aspects of insect hydrocarbons. Annual Review Entomology 50, 371393.CrossRefGoogle ScholarPubMed
Michereff, MFF, Borges, M, Aquino, M, Laumann, RA, Mendes, GA and Blassioli-Moraes, MC (2016) The influence of volatile semiochemicals from stink bug eggs and oviposition-damaged plants on the foraging behavior of the egg parasitoid Telenomus podisi. Bulletin of Entomological Research 106, 663671.CrossRefGoogle ScholarPubMed
Nerio, LS, Oliveiro-Verbel, J and Stashenko, E (2010) Repellent activity of essential oils: a review. Bioresource Technology 101, 372378.Google ScholarPubMed
NIST/wiley (2008) Software NIST/EPA/NIH Mass Spectral Library. Available online at: https://chemdata.nist.gov/dokuwiki/doku.php?id=chemdata:downloads:start.Google Scholar
Nordlund, DA, Strand, MR, Lewis, WJ and Vinson, SB (1987) Role of kairomones from host accessory gland secretion in host recognition by Telenomus remus and Trichogramma pretiosum, with partial characterization. Entomologia Experimentalis et Applicata 44, 3744.CrossRefGoogle Scholar
Renou, M, Nagnan, P, Berthier, A and Durier, C (1992) Identification of compounds from the eggs of Ostrinia nubilalis and Mamestra brassicae having kairomone activity of Trichogramma brassicae. Entomologia Experimentalis et Applicata 63, 291303.Google Scholar
Rutledge, CE (1996) A survey of identified kairomones and synomones used by insect parasitoids to locate and accept their hosts. Chemoecology 7, 121131.CrossRefGoogle Scholar
Schröder, R and Hilker, M (2008) The relevance of background odor in resource location by insects: a behavioral approach. Bioscience 58, 308316.Google Scholar
Sujii, ER, Costa, MLM, Pires, CSS, Colazza, S and Borges, M (2002) Inter and intra-guild interactions in egg parasitoid species of the soybean stink bug complex. Pesquisa Agropecuária Brasileira 37, 15411549.CrossRefGoogle Scholar
Tillman, PG (2011) Natural biological control of stink bug (Heteroptera: Pentatomidae) eggs in corn, peanut, and cotton farmscapes in Georgia. Environmental Entomology 40, 303314.CrossRefGoogle Scholar
Tognon, R, Sant'Ana, J and Jahnke, SM (2014) Influence of original host on chemotaxic behaviour and parasitism in Telenomus podisi Ashmead (Hymenoptera: Platygastridae). Bulletin of Entomological Research 104, 781787.CrossRefGoogle Scholar
Tognon, R, Sant'Ana, J, Zhang, Q-H, Millar, JG, Zalom, FG and Aldrich, JR (2016) Volatiles mediating parasitism of Euschistus conspersus and Halyomorpha halys (Heteroptera: Pentatomidae) eggs by Telenomus podisi and Trissolcus erugatus (Hymenoptera: Scelionidae). Journal of Chemical Ecology 42, 10161027.CrossRefGoogle Scholar
Tognon, R, Sant'Ana, J, Redaelli, LR and Meyer, AL (2018) Is it possible to manipulate Scelionidae wasps’ preference to a target host? Neotropical Entomology 47, 689697.CrossRefGoogle ScholarPubMed
Vargas, CC, Redaelli, LR, Sant'Ana, J, Morais, RM and Padilha, P (2017) Influência da idade do hospedeiro e da aprendizagem no comportamento quimiotáxico e no parasitismo de Trichogramma pretiosum. Iheringia. Série Zoologia 107, 17.Google Scholar
Vet, LEM and Dicke, M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annual Review of Entomology 37, 141172.Google Scholar
Vet, LEM, Lewis, WJ and Cardé, RT (1995) Parasitoid foraging and learning. In Cardé, RT and Bell, WJ (eds), Chemical Ecology of Insects 2. New York: Chapman & Hall, EUA, pp. 65101.CrossRefGoogle Scholar
Vinson, SB (1994) Physiological interactions between egg parasitoids and their hosts. In Wajnberg, E and Hassan, SA (eds), Biological Control with Egg Parasitoids. Oxford, UK: CAB International, pp. 245271.Google Scholar
Vinson, SB (1998) The general host selection behavior of parasitoid Hymenoptera and a comparison of initial strategies utilized by larvaphagous and oophagous species. Biological Control 11, 7996.Google Scholar
Yong, TH, Ptcher, S, Gardner, J and Hoffmann, MP (2007) Odor specific testing in the assessment of efficacy and non-target risk for Trichogramma ostriniae (Hymenoptera: Trichogrammatidae). Biocontrol Science Technology 17, 135153.Google Scholar