Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T19:10:25.232Z Has data issue: false hasContentIssue false

Investigation of larvae digestive β-glucosidase and proteases of the tomato pest Tuta absoluta for inhibiting the insect development

Published online by Cambridge University Press:  22 February 2016

S. Sellami
Affiliation:
Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
K. Jamoussi*
Affiliation:
Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
*
*Author for correspondence Phone: (216)74871816 Fax: (216)74875818 E-mail: [email protected]

Abstract

The tomato leaf miner Tuta absoluta is one of the most devastating pests for tomato crops. Digestive proteases and β-glucosidase enzymes were investigated using general and specific substrates and inhibitors. Maximal β-glucosidase and proteolytic activities occurred at temperature and pH optima of 30 and 40°C, 5 and 10–11 unit of pH, respectively. Zymogram analysis showed the presence of distinguished β-glucosidase exhibiting a specific activity of about 183 ± 15 µmol min−1 mg−1. In vitro inhibition experiments suggested that serine proteases were the primary gut proteases. Gel based protease inhibition assays demonstrated that the 28 and 73 kDa proteases might be trypsin-like and chymotrypsin-like enzymes, respectively. Overall gut trypsin-like and chymotrypsin-like activities were evaluated to be about 27.2 ± 0.84 and 1.68 ± 0.03 µmol min−1 mg−1, respectively. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis showed that T. absoluta gut serine proteases are responsible for Bacillus thuringiensis Cry insecticidal proteins proteolysis. Additionally, bioassays showed that T. absoluta larvae development was more affected by the β-glucosidases inhibitor (D-glucono-δ-lactone) than the serine proteases inhibitor (soybean trypsin inhibitor). These results are of basic interest since they present interesting data of β-glucosidases and gut serine proteases of T. absoluta larvae.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Applebaum, S.W. (1985) Biochemistry of digestion. pp. 279311in Kerkut, G.A. and Gilbert, L.I. (Eds). Comprehensive Insect Physiology, Biochemistry, and Pharmacology. New York, Pergamon Press.Google Scholar
Benjakul, S., Visessanguan, W. & Thummaratwasik, P. (2000) Isolation and characterization of trypsin inhibitors from some Thai legume seeds. Journal of Food Biochemistry 24, 107127.Google Scholar
Ben Khedher, S., Boukedi, H., Kilani-Feki, O., Chaib, I., Laarif, A., Abdelkefi-Mesrati, L. & Tounsi, S. (2015) Bacillus amyloliquefaciens AG1 biosurfactant: putative receptor diversity and histopathological effects on Tuta absoluta midgut. Journal of Invertebrate Pathology 132, 4247.Google Scholar
Bradford, M.M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Analytical Biochemistry 72, 248254.Google Scholar
Bravo, A., Gill, S.S. & Soberón, M. (2005) Bacillus thuringiensis mechanisms and use. pp. 175206in Gilbert, L.I., Iatrou, K. & Gill, S.S. (Eds) Comprehensive Molecular Insect Science. Oxford, Elsevier.Google Scholar
Broadway, R.M. (1995) Are insects resistant to plant proteinase inhibitors? Journal of Insect Physiology 41, 107116.CrossRefGoogle Scholar
Broadway, R.M. (2000) The response of insects to dietary protease inhibitors. pp. 8088in Michaud, D. (Eds). Recombinant Protease Inhibitors in Plants. Georgetown, Texas, Eurekah.com.Google Scholar
Broadway, R.M. & Duffey, S.S. (1986) Plant proteinase inhibitors: mechanism of action and effect on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua. Journal of Insect Physiology 32, 827833.Google Scholar
Budatha, M., Meur, G. & Dutta-Gupta, A. (2008) Identification and characterization of midgut proteases in Achaea janata and their implications. Biotechnology Letters 30, 305310.Google Scholar
Byeon, G.M., Lee, K.S., Gui, Z.Z., Kim, I., Kang, P.D., Lee, S.M., Sohn, H.D. & Jin, B.R. (2005) A digestive β-glucosidase from the silkworm, Bombyx mori: cDNA cloning, expression and enzymatic characterization. Comparative Biochemistry and Physiology Part B Biochemistry and Molecular Biology 141, 418427.Google Scholar
Dammak, M., Ben Khedher, S., Boukedi, H., Chaib, I., Laarif, A. & Tounsi, S. (2016) Involvement of the processing step in the susceptibility/tolerance of two lepidopteran larvae to Bacillus thuringiensis Cry1Aa toxin. Pesticide Biochemistry and Physiology 127, 4650.Google Scholar
Davis, B.J. (1964) Disc electrophoresis II. Method and application to human serum proteins. Annals of New York Academy of Sciences 2, 404427.Google Scholar
Del Mar, E.G., Brodrick, J.W., Geokas, M.C. & Largman, C. (1979) Effect of oxidation of methionine in a peptide substrate for human elastases: a model for inactivation of α1-protease inhibitor. Biochemical and Biophysical Research Communications 88, 346350.Google Scholar
Desneux, N., Wajnberg, E., Wyckhuys, K., Burgio, G., Arpaia, S. & Narv́aez-Vasquez, C. (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. Journal of Pest Science 83, 197215.Google Scholar
Desneux, N., Luna, M.G., Guillemaud, T. & Urbaneja, A. (2011) The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. Journal of Pest Science 84, 403408.Google Scholar
De Melo, E.B., da Silveira, G.A. & Carvalho, I. (2006) α- and β-glucosidase inhibitors: chemical structure and biological activity. Tetrahedron 62, 1027710302.Google Scholar
Díaz-Mendoza, M., Farinós, G.P., Castañera, P., Hernández-Crespo, P. & Ortego, F. (2007) Proteolytic processing of native Cry1Ab toxin by midgut extracts and purified trypsins from the Mediterranean corn borer Sesamia nonagrioides. Journal of Insect Physiology 53, 428435.Google Scholar
Dobler, S., Petschenka, G. & Pankoke, H. (2011) Coping with toxic plant compounds – the insect's perspective on iridoid glycosides and cardenolides. Phytochemistry 72, 15931604.Google Scholar
Ferracini, C., Ingegno, B.L., Navone, P., Ferrari, E., Mosti, M., Tavella, L. & Alma, A. (2012) Adaptation of indigenous larval parasitoids to Tuta absoluta (Lepidoptera: Gelechiidae) in Italy. Journal of Economic Entomology 105, 13111319.Google Scholar
Ferreira, C. & Terra, W.R. (1983) Physical and kinetic properties of a plasma membrane bound b-D-glucosidase (cellobiase) from midgut cells of an insect (Rhynchosciara americana larva). Biochemical Journal 213, 4351.Google Scholar
Gatehouse, A.M.R., Norton, E., Davison, G.M., Babbe, S.M., Newell, C.A. & Gatehouse, J.A. (1999) Digestive proteolytic activity in larvae of tomato moth, Lacanobia oleracea; effects of plant proteinase inhibitors in vitro and in vivo. Journal of Insect Physiology 45, 545558.Google Scholar
Ghadamyari, M., Hosseininaveh, V. & Sharifi, M. (2010) Partial biochemical characterization of α- and β-glucosidases of lesser mulberry pyralid, Glyphodes pyloalis Walker (Lep.: Pyralidae). Comptes rendus Biologie 333, 197204.Google Scholar
Giustolin, T.A., Vendramim, J.D., Alves, S.B. & Vieira, S.A. (2001) Pathogenicity of Beauveria bassiana (Bals.) Vuill. to Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) reared on two genotypes of tomato. Neotropical Entomology 30, 417421.CrossRefGoogle Scholar
Haddi, K., Berger, M., Bielza, P., Cifuentes, D., Field, L.M., Gorman, K., Rapisarda, C., Williamson, M.S. & Bass, C. (2012) Identification of mutations associated with pyrethroid resistance in the voltage-gated sodium channel of the tomato leaf miner (Tuta absoluta). Insect Biochemistry and Molecular Biology 42, 506513.CrossRefGoogle ScholarPubMed
Hegedus, D., Baldwin, D., O'grady, M., Braun, L., Gleddie, S., Sharpe, A., Lydiate, D. & Erlandson, M. (2003) Midgut proteases from Mamestra configurata (Lepidoptera: Noctuidae) larvae: characterization, cDNA cloning and expressed sequence tag analysis. Archives of Insect Biochemistry and Physiology 53, 3047.Google Scholar
Jamoussi, K., Sellami, S., Nasfi, Z., Krichen-Makni, S. & Tounsi, S. (2013) Efficiency and midgut histopathological effect of the newly isolated Bacillus thuringiensis KS δ-endotoxins on the emergent pest Tuta absoluta. Journal of Microbiology and Biotechnology 23, 10991106.Google Scholar
Johnson, R., Narvaez, J., An, G. & Ryan, C. (1989) Expression of proteinase inhibitor I and II in transgenic tobacco plants: effects on natural defence against Manduca sexta larvae. Proceedings of the National academy of Sciences of the United States of America 86, 98719875.Google Scholar
Johnston, K.A., Gatehouse, J.A. & Anstee, J.H. (1993) Effects of soybean protease inhibitors on the growth and development of larval Helicoverpa armigera. Journal of Insect Physiology 39, 657664.Google Scholar
Johnston, K.A., Le, M., Brough, C., Hilder, V.A., Gatehouse, A.M.R. & Gatehouse, J.A. (1995) Protease activities in the larval midgut of Heliothis virescens: evidence of trypsin and chymotrypsin-like enzymes. Insect Biochemistry and Molecular Biology 25, 375383.Google Scholar
Kembhavi, A.A., Kulharni, A. & Pant, A.A. (1993) Salt tolerant and thermostable alkaline protease from Bacillus subtilis NCIM N°64. Applied Biochemistry and Biotechnology 38, 8392.Google Scholar
Laemmli, U.K. & Favre, M. (1973) Maturation of the head of bacteriophage T4. I. DNA packaging events. Journal of Molecular Biology 80, 575592.Google Scholar
Li, Y.K., Chir, J., Tanaka, S. & Chen, F.Y. (2002) Identification of the general acid/base catalyst of a family 3 β-glucosidase from Flavobacterium meningosepticum. Biochemistry 41, 27512759.Google Scholar
Lietti, M.M.M., Botto, E. & Alzogaray, R.A. (2005) Insecticide resistance in Argentine populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotropical Entomology 34, 113119.Google Scholar
Lwalaba, D., Weidlich, S., Hoffmann, K.H. & Woodring, J. (2010) Exogenous and endogenous proteases inhibitors in the gut of the fall armyworm larvae, Spodoptera frugiperda. Archives of Insect Biochemistry and Physiology 74, 114126.Google Scholar
Marana, S.R., Terra, W.R. & Ferreira, C. (2000) Purification and properties of a β-glycosidase purified from midgut cells of Spodoptera frugiperda (Lepidoptera) larvae. Insect Biochemistry and Molecular Biology 30, 11391146.Google Scholar
Miranda, R., Zamudio, F.Z. & Bravo, A. (2001) Processing of Cry1Ab delta-endotoxin from Bacillus thuringiensis by Manduca sexta and Spodoptera frugiperda midgut proteases: role in protoxin activation and toxin inactivation. Insect Biochemistry and Molecular Biology 31, 11551163.Google Scholar
Mollá, O., González-Cabrera, J. & Urbaneja, A. (2011) The combined use of Bacillus thuringiensis and Nesidiocoris tenuis against the tomato borer Tuta absoluta. Biocontrol 56, 883891.Google Scholar
Morant, A.V., Jorgensen, K., Jorgensen, C., Paquette, S.M., Sánchez-Pérez, R., Moller, B.L. & Bak, S. (2008) β-Glucosidases as detonators of plant chemical defense. Phytochemistry 69, 17951813.Google Scholar
Oppert, B., Kramer, K.J., Beeman, R.W., Johnson, D. & McGaughey, W.H. (1997) Protease-mediated insect resistance to Bacillus thuringiensis toxin. The Journal of Biological Chemistry 272, 2347323476.Google Scholar
Oppert, B., Kramer, K.J., Johnson, D., Upton, S.J. & McGaughey, W.H. (1996) Luminal proteinases from Plodia interpunctella and the hydrolysis of Bacillus thuringiensis CryIA(c) protoxin. Insect Biochemistry and Molecular Biology 26, 571583.Google Scholar
Patankar, A.G., Giri, A.P., Harsulkar, A.M., Sainani, M.N., Deshpande, V.V., Ranjekar, P.K. & Gupta, V.S. (2001) Complexity in specificities and expression of Helicoverpa armigera gut proteases explains polyphagous nature of the insect pest. Insect Biochemistry and Molecular Biology 31, 453464.Google Scholar
Potting, R. (2009) Pest risk analysis, Tuta absoluta, tomato leaf miner moth. Plant protection service of the Netherlands pp. 24.Google Scholar
R Core Team (2015) R: A Language and Environment for Statistical Computing. Vienna, R Foundation for Statistical Computing, Austria. Available online at http://www.R-project.org/Google Scholar
Riseh, N.S., Ghadamyari, M. & Motamediniya, B. (2012) Biochemical characterization of α and β-glucosidases and α- and β- galactosidases from red palm weevil, Rhynchophorus ferrugineus Olivieri (Col.: Curculionide). Plant Protection Science 48, 8593.Google Scholar
Rodriguez, M.S., Gerding, M.P. & France, A.I. (2006) Entomopathogenic fungi isolates selection for egg control of tomato moth Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) eggs. Agricultura Técnica 66, 151158.Google Scholar
Saibi, W., Amouri, B. & Gargouri, A. (2007) Purification and biochemical characterization of a transglucosilating β-glucosidase of Stachybotrys strain. Applied Microbiology and Biotechnology 77, 293300.Google Scholar
Santos, C.D. & Terra, W.R. (1985) Physical properties substrate specificities and a probable mechanism for a β-D-glucosidase (cellobiase) from midgut cells of the cassava hornworm Erinnyis ello. Biochimica and Biophysica Acta 831, 179185.Google Scholar
Sellami, S., Zghal, T., Cherif, M., Zalila-Kolsi, I., Jaoua, S. & Jamoussi, K. (2013) Screening and identification of a Bacillus thuringiensis strain S1/4 with large and efficient insecticidal activities. Journal of Basic Microbiology 53, 539548.Google Scholar
Silva, F.C., Alcazar, A., Macedo, L.L., Oliveira, A.S., Macedo, F.P., Abreu, L.R., Santos, E.A. & Sales, M.P. (2006) Digestive enzymes during development of Ceratitis capitata (Diptera: Tephritidae) and effects of SBTI on its digestive serine proteinase targets. Insect Biochemistry and Molecular Biology 36, 561569.Google Scholar
Siqueira, H.A.A., Guedes, R.N.C. & Picanco, M.C. (2000) Cartap resistance and synergism in populations of Tuta absoluta (Lep., Gelechiidae). Journal of Applied Entomology 124, 233238.Google Scholar
Srinivasan, A., Giri, A.P. & Gupta, V.S. (2006) Structural and functional diversities in lepidopteran serine proteases. Cellular and Molecular Biology Letters 11, 132154.Google Scholar
Terra, W.R. & Ferreira, C. (1994) Insect digestive enzymes: properties, compartmentalization and function. Comparative Biochemistry and Physiolology Part B Biochemistry and Molecular Biology 109, 162.Google Scholar
Urbaneja, A., Vercher, R., Navarro, V., Garcıia, F. & Porcuna, J.L. (2007) La polilla del tomate, Tuta absoluta. Phytoma Espania 194, 1623.Google Scholar
Wagner, W., Mohrlen, F. & Schnetter, W. (2002) Characterization of the proteolytic enzymes in the midgut of the European Cockchafer, Melolontha melolontha (Coleoptera: Scarabaeidae). Insect Biochemistry and Molecular Biology 32, 803814.Google Scholar
Wallecha, A. & Mishra, S. (2003) Purification and characterization of two β-glucosidases from a thermo-tolerant yeast Pichia etchellsii. Biochimica and Biophysica Acta 1649, 7484.Google Scholar
Wei, S.H., Semel, Y., Bravdo, B.A., Czosnek, H. & Shoseyov, O. (2007) Expression and subcellular compartmentation of Aspergillus niger β-glucosidase in transgenic tobacco result in an increased insecticidal activity on whiteflies (Bemisia tabaci). Plant Science 172, 11751181.Google Scholar
Zhou, J.M., Liu, C. & Tsou, C.L. (1989) Kinetics of trypsin inhibition by its specific inhibitors. Biochemistry 28, 10701076.Google Scholar
Zouari, N., Dhouib, A., Ellouz, R. & Jaoua, S. (1997) Nutritional requirement of a strain of Bacillus thuringiensis subsp. kurstaki and use of gruel hydrolysate for the formulation of a new medium for delta-endotoxin production. Applied Biochemistry and Biotechnology 69, 4152.Google Scholar