Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-02-08T17:35:04.482Z Has data issue: false hasContentIssue false

Instar identification and weight prediction of Ostrinia furnacalis (Guenée) larvae using machine learning

Published online by Cambridge University Press:  27 January 2025

Xiao Feng
Affiliation:
College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China
Farman Ullah
Affiliation:
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
Jiali Liu
Affiliation:
College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China
Yunliang Ji
Affiliation:
College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China
Sohail Abbas
Affiliation:
College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China
Siqi Liao
Affiliation:
College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China
Jamin Ali
Affiliation:
College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China
Nicolas Desneux
Affiliation:
Université Côte d’Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France
Rizhao Chen*
Affiliation:
College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China
*
Corresponding author: Rizhao Chen; Email: [email protected]

Abstract

The Asian corn borer, Ostrinia furnacalis (Guenée), emerges as a significant threat to maize cultivation, inflicting substantial damage upon the crops. Particularly, its larval stage represents a critical point characterised by significant economic consequences on maize yield. To manage the infestation of this pest effectively, timely and precise identification of its larval stages is required. Currently, the absence of techniques capable of addressing this urgent need poses a formidable challenge to agricultural practitioners. To mitigate this issue, the current study aims to establish models conducive to the identification of larval stages. Furthermore, this study aims to devise predictive models for estimating larval weights, thereby enhancing the precision and efficacy of pest management strategies. For this, 9 classification and 11 regression models were established using four feature datasets based on the following features geometry, colour, and texture. Effectiveness of the models was determined by comparing metrics such as accuracy, precision, recall, F1-score, coefficient of determination, root mean squared error, mean absolute error, and mean absolute percentage error. Furthermore, Shapley Additive exPlanations analysis was employed to analyse the importance of features. Our results revealed that for instar identification, the DecisionTreeClassifier model exhibited the best performance with an accuracy of 84%. For larval weight, the SupportVectorRegressor model performed best with R2 of 0.9742. Overall, these findings present a novel and accurate approach to identify instar and predict the weight of O. furnacalis larvae, offering valuable insights for the implementation of management strategies against this key pest.

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almarinez, J and Hernandez, A (2019) Classifying Mangrove Crub Images for Growth Stages Detection and Monitoring. 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), Beijing, China.CrossRefGoogle Scholar
Ärje, J, Melvad, C, Jeppesen, MR, Madsen, SA, Raitoharju, J, Rasmussen, MS, Iosifidis, A, Tirronen, V, Meissner, K, Gabbouj, M and Høye, TT JMiE and Evolution (2020) Automatic image‐based identification and biomass estimation of invertebrates. Methods in Ecology and Evolution 11, 922931. doi:10.1111/2041-210X.13428CrossRefGoogle Scholar
Barah, A and Ak, S (1991) Correlation and regression studies between pupal weight and fecundity of muga silkworm Antheraea assama Westwood (Lepidoptera: Saturniidae) on four different foodplants. Acta Physiologica Hungarica 78(3), 261264.Google ScholarPubMed
Erenstein, O, Jaleta, M, Sonder, K, Mottaleb, K and Prasanna, BM (2022) Global maize production, consumption and trade: Trends and R&D implications. Food Security 14(5), 12951319. doi:10.1007/s12571-022-01288-7CrossRefGoogle Scholar
Fang, G, Zhang, Q, Chen, X, Cao, Y, Wang, Y, Qi, M, Wu, N, Qian, L, Zhu, C, Huang, Y and Zhan, S (2021) The draft genome of the Asian corn borer yields insights into ecological adaptation of a devastating maize pest. Insect Biochemistry and Molecular Biology 138, . doi:10.1016/j.ibmb.2021.103638CrossRefGoogle ScholarPubMed
Fletcher, LE (2009) Examining potential benefits of group living in a sawfly larva, Perga affinis. Behavioral Ecology 20(3), 657664. doi:10.1093/beheco/arp048CrossRefGoogle Scholar
Foba, CN, Shi, J-H, An, -Q-Q, Liu, L, Hu, X-J, Mams, H, Liu, H, Zhao, P-M and Wang, M-Q (2023) Volatile-mediated tritrophic defense and priming in neighboring maize against Ostrinia furnacalis and Mythimna separata. Pest Management Science 79(1), 105113. doi:10.1002/ps.7178CrossRefGoogle ScholarPubMed
Greenberg, SM, Sappington, TW, Legaspi, BC, Liu, T-X and Sétamou, M (2001) Feeding and life history of Spodoptera exigua (Lepidoptera: Noctuidae) on different host plants. Annals of the Entomological Society of America 94(4), 566575. doi:10.1603/0013-8746(2001)094[0566:FALHOS]2.0.CO;2CrossRefGoogle Scholar
He, K, Wang, Z, Zhou, D, Wen, L, Song, Y and Yao, Z (2003) Evaluation of transgenic Bt corn for resistance to the Asian corn borer (Lepidoptera: Pyralidae). Journal of Economic Entomology 96(3), 935940. doi:10.1093/jee/96.3.935CrossRefGoogle Scholar
He, Y, Tiezzi, F, Howard, J and Maltecca, C (2021) Predicting body weight in growing pigs from feeding behavior data using machine learning algorithms. Computers and Electronics in Agriculture 184, 106085.doi:10.1016/j.compag.2021.106085CrossRefGoogle Scholar
Ibrahim, EA, Salifu, D, Mwalili, S, Dubois, T, Collins, R and Tonnang, HEZ (2022) An expert system for insect pest population dynamics prediction. Computers and Electronics in Agriculture 198, . doi:10.1016/j.compag.2022.107124CrossRefGoogle Scholar
Johari, S, Khairunniza-Bejo, S, Rashid Mohamed Shariff, A, Azuan Husin, N, Mazmira, MBM and Kamarudin, N (2022) Identification of bagworm (Metisa plana) instar stages using hyperspectral imaging and machine learning techniques. Computers and Electronics in Agriculture 194, . doi:10.1016/j.compag.2022.106739Google Scholar
Johari, SNAM, Khairunniza-Bejo, S, Shariff, ARM, Husin, NA, Masri, MMM and Kamarudin, N (2023) Automatic classification of bagworm, Metisa plana (Walker) instar stages using a transfer learning-based framework. Agriculture 13(2), . doi:10.3390/agriculture13020442CrossRefGoogle Scholar
Kennett, DJ, Prufer, KM, Culleton, BJ, George, RJ, Robinson, M, Trask, WR, Buckley, GM, Moes, E, Kate, EJ, Harper, TK, O’Donnell, L, Ray, EE, Hill, EC, Alsgaard, A, Merriman, C, Meredith, C, Edgar, HJH, Awe, JJ and Gutierrez, SMJSA (2020) Early isotopic evidence for maize as a staple grain in the Americas. Science Advances 6(23), . doi:10.1126/sciadv.aba3245CrossRefGoogle ScholarPubMed
Kirkeby, C, Rydhmer, K, Cook, SM, Strand, A, Torrance, MT, Swain, JL, Prangsma, J, Johnen, A, Jensen, M, Brydegaard, M and Græsbøll, K (2021) Advances in automatic identification of flying insects using optical sensors and machine learning. Scientific Reports 11(1), . doi:10.1038/s41598-021-81005-0CrossRefGoogle ScholarPubMed
Koppenhöfer, AM, McGraw, BA, Kostromytska, OS and Wu, S (2019) Variable effect of larval stage on the efficacy of insecticides against Listronotus maculicollis (Coleoptera: Curculionidae) populations with different levels of pyrethroid resistance. Crop Protection 125, . doi:10.1016/j.cropro.2019.104888CrossRefGoogle Scholar
Li, H, Liu, FF, Fu, LQ, Liu, Z, Zhang, WT, Wang, Q and Rao, XJ (2021) Identification of 35 C-type lectins in the oriental armyworm, Mythimna separata (Walker). Insects 12(6), . doi:10.3390/insects12060559CrossRefGoogle ScholarPubMed
Li, J, Zhou, H, Wang, Z and Jia, Q (2020) Multi-scale detection of stored-grain insects for intelligent monitoring. Computers and Electronics in Agriculture 168, . doi:10.1016/j.compag.2019.105114CrossRefGoogle Scholar
Li, Q, Shi, J, Huang, C, Guo, J, He, K and Wang, Z (2023) Asian corn borer (Ostrinia furnacalis) infestation increases Fusarium verticillioides infection and fumonisin contamination in maize and reduces the yield. Plant Disease 107(5), 15571564. doi:10.1094/PDIS-03-22-0584-RECrossRefGoogle ScholarPubMed
Lu, S and S-j, Y (2020) Using an image segmentation and support vector machine method for identifying two locust species and instars. Journal of Integrative Agriculture 19(5), 13011313. doi:10.1016/S2095-3119(19)62865-0CrossRefGoogle Scholar
Lundberg, S and Lee, SI (2017) A unified approach to interpreting model predictions. 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.Google Scholar
Majewski, P, Zapotoczny, P, Lampa, P, Burduk, R and Reiner, J (2022) Multipurpose monitoring system for edible insect breeding based on machine learning. Scientific Reports 12(1), . doi:10.1038/s41598-022-11794-5CrossRefGoogle ScholarPubMed
Nawaz, A, Ali, H, Sufyan, M, Gogi, MD, Arif, MJ, Ali, A, Qasim, M, Islam, W, Ali, N, Bodla, I, Zaynab, M, Khan, KA and Ghramh, HA (2020) In-vitro assessment of food consumption, utilization indices and losses promises of leafworm, Spodoptera litura (Fab.), on okra crop. Journal of Asia-Pacific Entomology 23(1), 6066. doi:10.1016/j.aspen.2019.10.015CrossRefGoogle Scholar
Pedregosa, F, Varoquaux, G, Gramfort, A, Michel, V, Thirion, B, Grisel, O, Blondel, M, Prettenhofer, P, Weiss, R, Dubourg, V, Vanderplas, J, Passos, A, Cournapeau, D, Brucher, M, Perrot, M and Duchesnay, É (2011) Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12, 28252830.Google Scholar
Revadi, SV, Giannuzzi, VA, Rossi, V, Hunger, GM, Conchou, L, Rondoni, G, Conti, E, Anderson, P, Walker, WB, Jacquin-Joly, E, Koutroumpa, F and Becher, PG (2021) Stage-specific expression of an odorant receptor underlies olfactory behavioral plasticity in Spodoptera littoralis larvae. BMC Biology 19(1). doi:10.1186/s12915-021-01159-1CrossRefGoogle ScholarPubMed
Ruchay, A, Kober, V, Dorofeev, K, Kolpakov, V, Dzhulamanov, K, Kalschikov, V and Guo, H (2022) Comparative analysis of machine learning algorithms for predicting live weight of Hereford cows. Computers and Electronics in Agriculture 195, 106837. doi:10.1016/j.compag.2022.106837CrossRefGoogle Scholar
Sokolova, M and Lapalme, G (2009) A systematic analysis of performance measures for classification tasks. Information Processing and Management 45(4), 427437. doi:10.1016/j.ipm.2009.03.002CrossRefGoogle Scholar
Vivan, LM, Torres, JB and Fernandes, PLS (2016) Activity of selected formulated biorational and synthetic insecticides against larvae of Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Economic Entomology 110(1), 118126.Google Scholar
Wu, H, Appel, A G and Hu, X Ping (2013) Instar Determination of Blaptica dubia (Blattodea: Blaberidae) using Gaussian Mixture Models. Annals of the Entomological Society of America 106(3), 323328. doi:10.1603/AN12131CrossRefGoogle Scholar
Xu, C, Ding, J, Zhao, Y, Luo, J, Mu, W and Zhang, Z (2016) Cyantraniliprole at sublethal dosages negatively affects the development, reproduction, and nutrient utilization of Ostrinia furnacalis (Lepidoptera: Crambidae). Journal of Economic Entomology 110(1), 230238.Google Scholar
Xu, J, Feng, Z, Tang, J, Liu, S, Ding, Z, Lyu, J, Yao, Q and Yang, B (2022) Improved random forest for the automatic identification of Spodoptera frugiperda larval instar stages. Agriculture 12, . doi:10.3390/agriculture12111919CrossRefGoogle Scholar
Ye, S, Lu, S, Bai, X and Gu, J (2020) ResNet-Locust-BN network-based automatic identification of East Asian migratory locust species and instars from RGB Images. Insects 11(8), . doi:10.3390/insects11080458CrossRefGoogle Scholar
Zhao, J, Hoffmann, A, Jiang, YP, Xiao, LB, Tan, YA, Zhou, CY and Bai, LX (2022) Competitive interactions of a new invader (Spodoptera frugiperda) and indigenous species (Ostrinia furnacalis) on maize in China. Journal of Pest Science 95(1), 159168. doi:10.1007/s10340-021-01392-1CrossRefGoogle Scholar
Zhou, D, Wang, Y, Liu, B and Ju, Z (1980) Studies on the mass rearing of corn borer I. Development of a satisfactory artificial diet for larval growth. Acta Phytophylacica Sinica 7(2), 113122.Google Scholar