Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T00:38:11.516Z Has data issue: false hasContentIssue false

Impact of pest control strategies on the arthropodofauna living in bird nests built in nestboxes in pear and apple orchards

Published online by Cambridge University Press:  01 March 2013

Lise Roy*
Affiliation:
Université de Lyon – VetAgro Sup, Campus vétérinaire de Lyon – Laboratoire de Parasitologie, 1 av. Bourgelat, 69280 Marcy L'etoile, France
Jean-Charles Bouvier
Affiliation:
INRA UR1115 Plantes et Systèmes de culture Horticoles, 84000 Avignon, France
Claire Lavigne
Affiliation:
INRA UR1115 Plantes et Systèmes de culture Horticoles, 84000 Avignon, France
Mathieu Galès
Affiliation:
INRA UR1115 Plantes et Systèmes de culture Horticoles, 84000 Avignon, France
Thierry Buronfosse
Affiliation:
Université de Lyon – VetAgro Sup, Campus vétérinaire de Lyon – Laboratoire de Parasitologie, 1 av. Bourgelat, 69280 Marcy L'etoile, France
*
*Author for correspondence Phone: +33 (0) 6 69 78 76 87 E-mail: [email protected]

Abstract

Pesticide applications have a strong impact on biodiversity in agroecosystems. The present study aimed to assess the impact of pest control strategies on the arthropodofauna of Parus major nests built within nestboxes installed in orchards. Unlike many studied groups, these arthropod communities are not in direct contact with pesticide sprays (on account of their being sheltered by nestboxes) and are also unable to move away from the treated area. In this pilot study, we estimated the prevalence and the taxonomic and ecological diversities of arthropodofauna sampled in the nests and assessed the extent to which the whole and nest-specific arthropodofauna were affected by pest control strategies. Sixteen different insect and arachnid Primary Taxonomic Groups (PTGs, order level or below) were found in nests. The best represented PTGs (⩾10% occurrence in years 2007 and 2008) were Psocoptera (Insecta, detritivorous/saprophagous), detritivorous/saprophagous Astigmata (Acari) and hematophagous Mesostigmata (Acari). Pest control strategies had a large impact on the prevalence of arthropods in nests, with higher proportions of nests hosting arthropods in organic orchards than in conventional orchards and with intermediate proportions in nests in Integrated Pest Management orchards. In contrast, pest control strategies had no significant effect on the composition of the arthropod communities when only nests hosting nidicolous arthropods were considered.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambros, M., Krištofík, J. & Šustek, Z. (1992) The mites (Acari, Mesostigmata) in the birds’ nests in Slovakia. Biologia (Bratislava) 47, 369381.Google Scholar
Bengtsson, J., Ahnström, J. & Weibull, A.C. (2005) The effect of organic agriculture on biodiversity and abundance: a meta-analysis. Journal of Applied Ecology 42, 261269.Google Scholar
Bouvier, J.C., Toubon, J.F., Boivin, T. & Sauphanor, B. (2005) Effects of apple orchard management strategies on the great tit (Parus major) in south-eastern France. Environmental Toxicology and Chemistry 24, 28462852.Google Scholar
Bouvier, J.C., Ricci, B., Agerberg, J. & Lavigne, C. (2011) Apple orchard pest control strategies affect bird communities in southeastern France. Environmental Toxicology and Chemistry 30, 212219.CrossRefGoogle ScholarPubMed
Burtt, E.H. Jr., Chow, W. & Babbitt, G.A. (1991) Occurrence and demography of mites of Tree Swallow, House Wren, and Eastern Bluebird nests. pp. 104122in Loye, J.E. & Zuk, M. (Eds) Bird-Parasite Interactions: Ecology, Evolution, and Behaviour. Oxford, UK, Oxford University Press.Google Scholar
Cross, J.V. (2002) Guidelines for integrated production of pome fruits. IOBC/WPRS Bulletin 25, 18.Google Scholar
De Lillo, E. (2001) A modified method for Eriophyoid mite extraction (Acari: Eriophyoidea). International Journal of Acarology 27(1), 6770.Google Scholar
Doles, J.L., Zimmerman, R.J. & Moore, J.C. (2001) Soil microarthropod community structure and dynamics in organic and conventionally managed apple orchards in Western Colorado, USA. Applied Soil Ecology 18, 8396.CrossRefGoogle Scholar
Fain, A. & Galloway, T.D. (1993) Mites (Acari) from nests of sea birds in New Zealand. II. Mesostigmata and Astigmata. Bulletin De L'Institut Royal Des Sciences Naturelles De Belgique, Entomologie 63, 95111.Google Scholar
Fend'a, P. & Schniererová, E. (2004) Mites (Acarina: Mesostigmata) in the nest of Acrocephalus spp. and in neighbouring reeds. Biologia 59, 4147.Google Scholar
Feber, R.E., Firbank, L.G., Johnson, P.J. & Macdonald, D.W. (1997) The effects of organic farming on pest and non-pest butterfly abundance. Agriculture, Ecosystems and Environment 64, 133139.Google Scholar
Flohre, A., Fischer, C., Aavik, T., Bengtsson, J., Berendse, F., Bommarco, R., Ceryngier, P., Clement, L.W., Dennis, C., Eggers, S., Emmerson, M., Geiger, F., Guerrero, I., Hawro, V., Inchausti, P., Liira, J., Morales, M.B., Oñate, J.J., Pärt, T., Weisser, W.W., Winqvist, C., Thies, C. & Tscharntke, T. (2011) Agricultural intensification and biodiversity partitioning in European landscapes comparing plants, carabids, and birds. Ecological Applications 21, 17721781.Google Scholar
Fuller, R.J., Norton, L.R., Feber, R.E., Johnson, P.J., Chamberlain, D.E., Joys, A.C., Mathews, F., Stuart, R.C., Townsend, M.C., Manley, W.J., Wolfe, M.S., Macdonald, D.W. & Firbank, L.G. (2005) Benefits of organic farming to biodiversity vary among taxa. Biological Letters 1, 431434. doi:10.1098/rsbl.2005.0357.Google Scholar
Geiger, F., Bengtsson, J., Berendse, F., Weisser, W.W., Emmerson, M., Morales, M.B., Ceryngier, P., Liira, J., Tscharntke, T., Winqvist, C., Eggers, S., Bommarco, R., Pärt, T., Bretagnolle, V., Plantegenest, M., Clement, L.W., Dennis, C., Palmer, C., Oñate, J.J., Guerrero, I., Hawro, V., Aavik, T., Thies, C., Flohre, A., Hänke, S., Fischer, C., Goedhart, P.W. & Inchausti, P. (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic and Applied Ecology 11, 97105.Google Scholar
Goodenough, A. & Hart, A. (2012) Bird nests: an overlooked ecosystem opportunity for specialised nest-dwelling arthropods. Antenna 36, 1620.Google Scholar
Krištofík, J., Šustek, Z. & Mašán, P. (2002) Arthropods (Pseudoscorpionida, Acari, Coleoptera, Siphonaptera) in the nest of red-backed shrike (Lanius collurio) and lesser grey shrike (Lanius minor). Biologia 57, 603613.Google Scholar
Krištofík, J., Mašán, P. & Šustek, Z. (2007) Arthropods (Pseudoscorpionidea, Acarina, Coleoptera, Siphonaptera) in nests of the bearded tit (Panurus biarmicus). Biologia 62, 749755.Google Scholar
Lesna, I., Wolfs, P., Faraji, F., Roy, L., Komdeur, J. & Sabelis, M.W. (2009) Candidate predators for biological control of the poultry red mite Dermanyssus gallinae. Experimental and Applied Acarology 48, 6380.Google Scholar
Letourneau, D. & Goldstein, B. (2001) Pest damage and arthropod community structure in organic vs. conventional tomato production in California. Journal of Applied Ecology 38, 557570.Google Scholar
Mäder, P., Fliebbach, A., Dubois, D., Gunst, L., Fried, P. & Niggli, U. (2002) Soil fertility and biodiversity in organic farming. Science 296, 16941697.Google Scholar
Majka, C.G., Klimaszewski, J. & Lauff, R.F. (2006) New Coleoptera records from owl nests in Nova Scotia, Canada. Zootaxa 1194, 3347.Google Scholar
Merkl, O., Bagyura, J. & Rózsa, L. (2004) Insects inhabiting Saker (Falco cherrug) nests in Hungary. Ornis Hungarica 14, 14.Google Scholar
Micherdziński, W. (1980). Eine taxonomische Analyse der Familie Macronyssidae Oudemans, 1936.Warszawa Kraków, Polska Akademia Nauk, Zakład Zoologii Systematycznej I Doświadczalnej. p. 263.Google Scholar
Nosek, J. & Lichard, M. (1962) Beitrag zur Kenntnis der Vogelnestfauna. Entomologické Problémy (Bratislava) 2, 2951.Google Scholar
Paoletti, M.G., Schweigl, U. & Favretto, M.R. (1995) Soil macroinvertabrates, heavy metals and organochlorines in low and high input apple orchards and a coppiced woodland. Pedobiologia 39, 2033.Google Scholar
Roy, L., Dowling, A.P.G., Chauve, C.M., Lesna, I., Sabelis, M.W. & Buronfosse, T. (2009) Molecular phylogenetic assessment of host range in five Dermanyssus species. Experimental and Applied Acarology 48, 115142.Google Scholar
Šustek, Z. & Kriŝtofik, J. (2002) Beetles (Coleoptera) in deserted nests of Phoenicurus ochruros, Parus caeruleus, Parus major, Sitta europaea and Sturnus vulgaris. Entomofauna Carpathica 14, 6469.Google Scholar
Weibull, A.C., Bengtsson, J. & Nohlgren, E. (2003) Species composition in agroecosystems: the effect of landscape, habitat, and farm management. Basic and Applied Ecology 4, 349361.Google Scholar
Winqvist, C., Bengtsson, J., Aavik, T., Berendse, F., Clement, L.W., Eggers, S., Fischer, C., Flohre, A., Geiger, F., Liira, J., Pärt, T., Thies, C., Tscharntke, T., Weisser, W.W. & Bommarco, R. (2011) Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. Journal of Applied Ecology 48, 570579. doi: 10.1111/j.1365-2664.2010.01950.x.Google Scholar
Zeman, P. & Jurík, M. (1981) A contribution to the knowledge of fauna and ecology of gamasoid mites in cavity nests of birds in Czechoslovakia. Folia Parasitologia 28, 265271.Google Scholar