Hostname: page-component-669899f699-7xsfk Total loading time: 0 Render date: 2025-04-25T08:23:14.369Z Has data issue: false hasContentIssue false

How does Neoseiulus californicus McGregor respond to sublethal doses of entomopathogenic fungus Beauveria bassiana (Hyp.: Cordycipitaceae)?

Published online by Cambridge University Press:  27 September 2024

Katayoon Kheradmand*
Affiliation:
Department of Entomology and Plant Pathology, College of Aburaihan, University of Tehran, Tehran, Iran
Mahmoud Heidari
Affiliation:
Department of Entomology and Plant Pathology, College of Aburaihan, University of Tehran, Tehran, Iran
Amin Sedaratian-Jahromi
Affiliation:
Department of Plant Protection, Faculty of Agriculture, Yasouj University, Yasouj, Iran
Reza Talaei-Hassanloui
Affiliation:
Department of Plant Protection, Faculty of Agriculture, University of Tehran, Karaj, Iran
Mohammadreza Havasi
Affiliation:
Department of Entomology and Plant Pathology, College of Aburaihan, University of Tehran, Tehran, Iran
*
Corresponding author: Katayoon Kheradmand; Email: [email protected]

Abstract

Two-spotted spider mite, Tetranychus urticae Koch (Acari: Prostigmata), is one of the most economically important mite species, mainly controlled by chemical acaricides. Natural enemies have been assessed as reliable alternatives for management of this phytophagous mite. In the current project, demographic characteristics of Neoseiulus californicus McGregor (Acari: Phytoseiidae) to sublethal concentrations (LC10 = 6.76 × 102, LC20 = 8.74 × 103 and LC30 = 55.38 × 103 conidia ml−1) of entomopathogenic fungus, Beauveria bassiana (Bals.) Vuill. TV strain were investigated under laboratory conditions at 25 ± 2°C, 70 ± 5% RH and a photoperiod of 16:8 (L:D) h. Our results indicated that when adult predators were exposed to LC20 and LC30 of B. bassiana, the oviposition period was significantly reduced compared with other treatments. Neoseiulus californicus fecundity was significantly greater in the control (37 eggs) than in LC30 (24 eggs). Life table analysis revealed that the net reproductive rate (R0) declined as the sublethal concentrations of B. bassiana increased. The most striking result to emerge from the data is that not only intrinsic (r); but also, finite rate of increase (λ) was not significantly affected by different concentrations of B. bassiana. Our findings revealed some potential interactions of B. bassiana and N. californicus during their combinations for managing T. urticae that may be helpful for optimising control of this important pest.

Type
Research Paper
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Agrawal, AA (2000) Mechanisms, ecological consequences and agricultural implications of tri-trophic interactions. Current Opinion in Plant Biology 3, 329335.CrossRefGoogle ScholarPubMed
Akca, I, Ayvaz, T, Yazici, E, Smith, CL and Chi, H (2015) Demography and population projection of Aphis fabae (Hemiptera: Aphididae): with additional comments on life table research criteria. Journal of Economic Entomology 108, 14661478.CrossRefGoogle ScholarPubMed
Akköprü, EP, Atlıhan, R, Okut, H and Chi, H (2015) Demographic assessment of plant cultivar resistance to insect pests: a case study of the dusky-veined walnut aphid (Hemiptera: Callaphididae) on five walnut cultivars. Journal of Economic Entomology 108, 378387.CrossRefGoogle ScholarPubMed
Akyazi, R, Soysal, M, Altunç, EY, Lisle, A, Hassan, E and Akyol, D (2018) Acaricidal and sublethal effects of tobacco leaf and garlic bulb extract and soft soap on Tetranychus urticae Koch. (Acari: Trombidiformes: Tetranychidae). Systematic and Applied Acarology 23, 20542069.CrossRefGoogle Scholar
Alzoubi, S and Cobanoglu, S (2007) Effects of sublethal dose of different pesticides on the two-spotted spider mite Tetranychus urticae Koch and its predatory mites under greenhouse conditions. World Journal of Agricultural Sciences 3, 764770.Google Scholar
Arthurs, S and Thomas, MB (2000) Effects of a mycoinsecticide on feeding and fecundity of the brown locust Locustana pardalina. Biocontrol Science and Technology 10, 321329.CrossRefGoogle Scholar
Azadi-Qoort, A, Sedaratian-Jahromi, A, Haghani, M and Ghane-Jahromi, M (2019) Biological responses of Tetranychus urticae (Acari: Tetranychidae) to different host plants: an investigation on bottom-up effects. Systematic and Applied Acarology 24, 659674.CrossRefGoogle Scholar
Balkema-Boomstra, AG, Zijlstra, S, Verstappen, FWA, Inggamer, H, Mercke, PE, Jongsma, MA and Bouwmeester, HJ (2003) Role of cucurbitacin C in resistance to spider mite (Tetranychus urticae) in cucumber (Cucumis sativus L.). Journal of Chemical Ecology 29, 225235.CrossRefGoogle ScholarPubMed
Biondi, A, Desneux, N, Siscaro, G and Zappalà, L (2012) Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere 87, 803812.CrossRefGoogle Scholar
Biondi, A, Zappalà, L, Stark, JD and Desneux, N (2013) Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal effects? PLoS ONE 8, e76548.CrossRefGoogle ScholarPubMed
Blanford, S and Thomas, MB (2001) Adult survival, maturation, and reproduction of the desert locust Schistocerca gregaria infected with the fungus Metarhizium anisopliae var acridum. Journal of Invertebrate Pathology 78, 18.CrossRefGoogle ScholarPubMed
Blay, S and Yuval, B (1999) Oviposition and fertility in the Mediterranean fruit fly (Diptera: Tephritidae): effects of male and female body size and the availability of sperm. Annals of the Entomological Society of America 92, 278284.CrossRefGoogle Scholar
Bugeme, DM, Knapp, M, Boga, HI, Ekesi, S and Maniania, NK (2014) Susceptibility of developmental stages of Tetranychus urticae (Acari: Tetranychidae) to infection by Beauveria bassiana and Metarhizium anisopliae (Hypocreales: Clavicipitaceae). International Journal of Tropical Insect Science 34, 190196.Google Scholar
Carey, JR (1993) Applied Demography for Biologists: with Special Emphasis on Insects. New York, NY: Oxford University Press.CrossRefGoogle Scholar
Castagnoli, M and Simoni, S (2003) Neoseiulus californicus (McGregor) (Acari: Phytoseiidae): survey of biological and behavioural traits of a versatile predator. Redia 86, 153164.Google Scholar
Chi, H (1988) Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology 17, 2634.CrossRefGoogle Scholar
Chi, H (2021) Two Sex-MSChart: A Computer Program for the Age-Stage, Two-Sex Life Table Analysis. Taichung: National Chung Hsing University. Available at http://140.120.197.173/Ecology/Download/TWOSEX-MSChart.rarGoogle Scholar
Chi, H and Liu, H (1985) Two new methods for the study of insect population ecology. Bulletin of Institute of Zoology Academia Sinica 24, 225240.Google Scholar
Cock, MJ, van Lenteren, JC, Brodeur, J, Barratt, BI, Bigler, F, Bolckmans, K, Cônsoli, FL, Haas, F, Mason, PG, Parra, JR (2010) Do new access and benefit sharing procedures under the convention on biological diversity threaten the future of biological control? BioControl 55, 199218.CrossRefGoogle Scholar
Croft, BA (1990) Arthropod Biological Control Agents and Pesticides. New York: Wiley.Google Scholar
de Faria, M and Wraight, SP (2001) Biological control of Bemisia tabaci with fungi. Crop Protection 20, 767778.CrossRefGoogle Scholar
de Faria, MR and Wraight, SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biological Control 43, 237256.CrossRefGoogle Scholar
de Freitas, GS, de Araújo Lira, V, Jumbo, LOV, dos Santos, FJ, Rêgo, AS and Teodoro, AV (2021) The potential of Beauveria bassiana to control Raoiella indica (Acari: Tenuipalpidae) and its compatibility with predatory mites. Crop Protection 149, 105776.CrossRefGoogle Scholar
Desneux, N, Decourtye, A and Delpuech, JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology 52, 81106.CrossRefGoogle ScholarPubMed
Dogan, YO, Hazir, S, Yildiz, A, Butt, TM and Cakmak, I (2017) Evaluation of entomopathogenic fungi for the control of Tetranychus urticae (Acari: Tetranychidae) and the effect of Metarhizium brunneum on the predatory mites (Acari: Phytoseiidae). Biological Control 111, 612.CrossRefGoogle Scholar
Escudero, LA and Ferragut, F (2005) Life-history of predatory mites Neoseiulus californicus and Phytoseiulus persimilis (Acari: Phytoseiidae) on four spider mite species as prey, with special reference to Tetranychus evansi (Acari: Tetranychidae). Biological Control 32, 378384.CrossRefGoogle Scholar
Fathipour, Y, Karimi, M, Farazmand, A and Talebi, AA (2017) Age-specific functional response and predation rate of Amblyseius swirskii (Phytoseiidae) on two-spotted spider mite. Systematic and Applied Acarology 22, 159169.CrossRefGoogle Scholar
Fatiha, L, Huang, Z, Ren, SX and Ali, S (2008) Effect of Verticillium lecanii on biological characteristics and life table of Serangium japonicum (Coleoptera: Coccinellidae), a predator of whiteflies under laboratory conditions. Insect Science 15, 327333.CrossRefGoogle Scholar
Ganjisaffar, F, Fathipour, Y and Kamali, K (2011) Temperature-dependent development and life table parameters of Typhlodromus bagdasarjani (Phytoseiidae) fed on two-spotted spider mite. Experimental and Applied Acarology 55, 259272.CrossRefGoogle ScholarPubMed
Gao, SK and Yang, ZQ (2015) Application of life table in pest biological control. Chinese Journal of Biological Control 31, 256263.Google Scholar
Gholamzadeh-Chitgar, M, Hajizadeh, J, Ghadamyari, M, Karimi-Malati, A and Hoda, H (2017) Effect of sublethal concentration of Beauveria bassiana fungus on demographic and some biochemical parameters of predatory bug, Andrallus spinidens Fabricius (Hemiptera: Pentatomidae) in laboratory conditions. Trakia Journal of Sciences 15, 160167.CrossRefGoogle Scholar
Goettel, MS and Inglis, GD (1997) Fungi: Hyphomycetes. In Lacey LA (ed.) Manual of Techniques in Insect Pathology. London: Academic Press, pp. 213249.CrossRefGoogle Scholar
Greco, NM, Liljesthröm, GG, Gugole Ottaviano, MF, Cluigt, N, Cingolani, MF, Zembo, JC and Sánchez, NE (2011) Pest management plan for the two-spotted spider mite, Tetranychus urticae, based on the natural occurrence of the predatory mite Neoseiulus californicus in strawberries. International Journal of Pest Management 57, 299308.CrossRefGoogle Scholar
Havasi, M, Kheradmand, K, Mosallanejad, H and Fathipour, Y (2018) Sublethal effects of diflovidazin on life table parameters of two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae). International Journal of Acarology 44, 115120.CrossRefGoogle Scholar
Hoy, M (2012) Biological Control in Agriculture Ipm System. Elsevier.Google Scholar
Huang, YB and Chi, H (2013) Life tables of Bactrocera cucurbitae (Diptera: Tephritidae): with an invalidation of the jackknife technique. Journal of Applied Entomology 137, 327339.CrossRefGoogle Scholar
Kaoud, HA (2010) Susceptibility of poultry red mites to entomopathogens. International Journal of Poultry Science 9, 259263.CrossRefGoogle Scholar
Khanamani, M, Fathipour, Y and Hajiqanbar, H (2013) Population growth response of Tetranychus urticae to eggplant quality: application of female age-specific and age-stage, two-sex life tables. International Journal of Acarology 39, 638648.CrossRefGoogle Scholar
Lahai, MT, Ekanayake, IJ and George, JB (1998) Leaf harvesting effects on leaf retention and pest and disease incidence of cassava (Manihot esculenta Crantz). African Crop Science Journal 11, 107117.Google Scholar
Li, YY, Zhang, GH, Tian, CB, Liu, MX, Liu, YQ, Liu, H and Wang, JJ (2017) Does long-term feeding on alternative prey affect the biological performance of Neoseiulus barkeri (Acari: Phytoseiidae) on the target spider mites? Journal of Economic Entomology 110, 915923.CrossRefGoogle ScholarPubMed
Liu, SS, Rao, A and Vinson, SB (2014) Biological control in China: past, present and future; an introduction to this special issue. Biological Control 68, 5.CrossRefGoogle Scholar
Liu, JF, Zhang, ZQ, Beggs, JR and Wei, XY (2019) Influence of pathogenic fungi on the life history and predation rate of mites attacking a psyllid pest. Ecotoxicology and Environmental Safety 183, 109585.CrossRefGoogle ScholarPubMed
Liu, JF, Zhang, ZQ, Beggs, JR, Paderes, E, Zou, X and Wei, XY (2020) Lethal and sublethal effects of entomopathogenic fungi on tomato/potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae) in capsicum. Crop Protection 129, 105023.CrossRefGoogle Scholar
McMurtry, JA and Scriven, GT (1965) Life-history studies of Amblyseius limonicus, with comparative observations on Amblyseius hibisci (Acarina: Phytoseiidae). Annals of the Entomological Society of America 58, 106111.CrossRefGoogle Scholar
Međo, I, Stojnić, B and Marčić, D (2017) Acaricidal activity and sublethal effects of the microbial pesticide spinosad on Tetranychus urticae (Acari: Tetranychidae). Systematic and Applied Acarology 22, 17481762.CrossRefGoogle Scholar
Midthassel, A, Leather, SR, Wright, DJ and Baxter, IH (2016) Compatibility of Amblyseius swirskii with Beauveria bassiana: two potentially complimentary biocontrol agents. BioControl 61, 437447.CrossRefGoogle Scholar
Moscardini, VF, da Costa Gontijo, P, Carvalho, GA, de Oliveira, RL, Maia, JB and Silva, FF (2013) Toxicity and sublethal effects of seven insecticides to eggs of the flower bug Orius insidiosus (Say) (Hemiptera: Anthocoridae). Chemosphere 92, 490496.CrossRefGoogle ScholarPubMed
Nauen, R, Stumpf, N, Elbert, A, Zebitz, CPW and Kraus, W (2001) Acaricide toxicity and resistance in larvae of different strains of Tetranychus urticae and Panonychus ulmi (Acari: Tetranychidae). Pest Management Science 57, 253261.CrossRefGoogle Scholar
Nawaz, M, Cai, W, Jing, Z, Zhou, X, Mabubu, JI and Hua, H (2017) Toxicity and sublethal effects of chlorantraniliprole on the development and fecundity of a non-specific predator, the multicolored Asian lady beetle, Harmonia axyridis (Pallas). Chemosphere 178, 496503.CrossRefGoogle ScholarPubMed
Pietrosiuk, A, Furmanowa, M, Kropczyńska, D, Kawka, B and Wiedenfeld, H (2003) Life history parameters of the two-spotted spider mite (Tetranychus urticae Koch) feeding on bean leaves treated with pyrrolizidine alkaloids. Journal of Applied Toxicology 23, 187190.CrossRefGoogle ScholarPubMed
Posada, F, Aime, MC, Peterson, SW, Rehner, SA and Vega, FE (2007) Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycological Research 111, 748757.CrossRefGoogle ScholarPubMed
Pozzebon, A and Duso, C (2010) Pesticide side-effects on predatory mites: the role of trophic interactions. Trends in Acarology, 465469.CrossRefGoogle Scholar
Quesada-Moraga, E, Santos-Quirós, R, Valverde-García, P and Santiago-Alvarez, C (2004) Virulence, horizontal transmission, and sublethal reproductive effects of Metarhizium anisopliae (Anamorphic fungi) on the German cockroach (Blattodea: Blattellidae). Journal of Invertebrate Pathology 87, 5158.CrossRefGoogle ScholarPubMed
Rashki, M, Kharazi-Pakdel, A, Allahyari, H and Van Alphen, JJM (2009) Interactions among the entomopathogenic fungus, Beauveria bassiana (Ascomycota: Hypocreales), the parasitoid, Aphidius matricariae (Hymenoptera: Braconidae), and its host, Myzus persicae (Homoptera: Aphididae). Biological Control 50, 324328.CrossRefGoogle Scholar
Riahi, E, Fathipour, Y, Talebi, AA and Mehrabadi, M (2017) Natural diets versus factitious prey: comparative effects on development, fecundity and life table of Amblyseius swirskii (Acari: Phytoseiidae). Systematic and Applied Acarology 22, 711723.CrossRefGoogle Scholar
Saito, T and Brownbridge, M (2018) Compatibility of foliage-dwelling predatory mites and mycoinsecticides, and their combined efficacy against western flower thrips Frankliniella occidentalis. Journal of Pest Science 91, 12911300.CrossRefGoogle Scholar
SAS Institute (2002) The SAS System for Windows. Cary, NC: SAS Institute.Google Scholar
Sedaratian, A, Fathipour, Y and Moharramipour, S (2011) Comparative life table analysis of Tetranychus urticae (Acari: Tetranychidae) on 14 soybean genotypes. Insect Science 18, 541553.CrossRefGoogle Scholar
Sedaratian, A, Fathipour, Y, Talaei-Hassanloui, R and Jurat-Fuentes, JL (2013) Fitness costs of sublethal exposure to Bacillus thuringiensis in Helicoverpa armigera: a carryover study on offspring. Journal of Applied Entomology 137, 540549.CrossRefGoogle Scholar
Seiedy, M, Saboori, A and Allahyari, H (2012) Interactions of two natural enemies of Tetranychus urticae, the fungal entomopathogen Beauveria bassiana and the predatory mite, Phytoseiulus persimilis. Biocontrol Science and Technology 22, 873882.CrossRefGoogle Scholar
Seyed-Talebi, FS, Kheradmand, K, Talaei-Hassanloui, R and Talebi-Jahromi, K (2012) Sublethal effects of Beauveria bassiana on life table parameters of two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Biocontrol Science and Technology 22, 293303.CrossRefGoogle Scholar
Seyed-Talebi, FS, Kheradmand, K, Talaei-Hassanloui, R and Talebi-Jahromi, K (2014) Synergistic effect of Beauveria bassiana and spirodiclofen on the two-spotted spider mite (Tetranychus urticae). Phytoparasitica 42, 405412.CrossRefGoogle Scholar
Shang, SQ, Chen, YN and Bai, YL (2018) The pathogenicity of entomopathogenic fungus Acremonium hansfordii to two-spotted spider mite, Tetranychus urticae and predatory mite Neoseiulus barkeri. Systematic and Applied Acarology 23, 21732183.CrossRefGoogle Scholar
Shi, WB and Feng, MG (2004) Lethal effect of Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces fumosoroseus on the eggs of Tetranychus cinnabarinus (Acari: Tetranychidae) with a description of a mite egg bioassay system. Biological Control 30, 165173.CrossRefGoogle Scholar
Shipp, JL, Zhang, Y, Hunt, DWA and Ferguson, G (2003) Influence of humidity and greenhouse microclimate on the efficacy of Beauveria bassiana (Balsamo) for control of greenhouse arthropod pests. Environmental Entomology 32, 11541163.CrossRefGoogle Scholar
Shipp, L, Kapongo, JP, Park, HH and Kevan, P (2012) Effect of bee-vectored Beauveria bassiana on greenhouse beneficials under greenhouse cage conditions. Biological Control 63, 135142.CrossRefGoogle Scholar
Song, ZW, Zheng, Y, Zhang, BX and Li, DS (2016) Prey consumption and functional response of Neoseiulus californicus and Neoseiulus longispinosus (Acari: Phytoseiidae) on Tetranychus urticae and Tetranychus kanzawai (Acari: Tetranychidae). Systematic and Applied Acarology 21, 936946.CrossRefGoogle Scholar
Stanley, J and Preetha, G (2016) Pesticide Toxicity to Non-Target Organisms. Berlin: Springer.CrossRefGoogle Scholar
Stark, JD and Banks, JE (2003) Population-level effects of pesticides and other toxicants on arthropods. Annual Review of Entomology 48, 505519.CrossRefGoogle ScholarPubMed
Steenberg, T and Kilpinen, O (2014) Synergistic interaction between the fungus Beauveria bassiana and desiccant dusts applied against poultry red mites (Dermanyssus gallinae). Experimental and Applied Acarology 62, 511524.CrossRefGoogle ScholarPubMed
Ullah, MS and Lim, UT (2017a) Laboratory evaluation of the effect of Beauveria bassiana on the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). Journal of Invertebrate Pathology 148, 102109.CrossRefGoogle ScholarPubMed
Ullah, MS and Lim, UT (2017b) Synergism of Beauveria bassiana and Phytoseiulus persimilis in control of Tetranychus urticae on bean plants. Systematic and Applied Acarology 22, 19241935.CrossRefGoogle Scholar
Ullah, MI, Altaf, N, Afzal, M, Arshad, M, Mehmood, N, Riaz, M, Majeed, S, Ali, S, Abdullah, A (2019) Effects of entomopathogenic fungi on the biology of Spodoptera litura (Lepidoptera: Noctuidae) and its reduviid predator, Rhynocoris marginatus (Heteroptera: Reduviidae). International Journal of Insect Science 11, 1179543319867116.CrossRefGoogle ScholarPubMed
Van Leeuwen, T, Vontas, J, Tsagkarakou, A, Dermauw, W and Tirry, L (2010) Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. Insect Biochemistry and Molecular Biology 40, 563572.CrossRefGoogle ScholarPubMed
Vergel, SJN, Bustos, RA, Rodríguez, CD and Cantor, RF (2011) Laboratory and greenhouse evaluation of the entomopathogenic fungi and garlic-pepper extract on the predatory mites, Phytoseiulus persimilis and Neoseiulus californicus and their effect on the spider mite Tetranychus urticae. Biological Control 57, 143149.CrossRefGoogle Scholar
Wekesa, VW, Moraes, GD, Knapp, M and Delalibera, I Jr (2007) Interactions of two natural enemies of Tetranychus evansi, the fungal pathogen Neozygites floridana (Zygomycetes: Entomophthorales) and the predatory mite, Phytoseiulus longipes (Acari: Phytoseiidae). Biological Control 41, 408414.CrossRefGoogle Scholar
Wraight, SP, Carruthers, RI, Jaronski, ST, Bradley, CA, Garza, CJ and Galaini-Wraight, S (2000) Evaluation of the entomopathogenic fungi Beauveria bassiana and Paecilomyces fumosoroseus for microbial control of the silverleaf whitefly, Bemisia argentifolii. Biological Control 17, 203217.CrossRefGoogle Scholar
Wu, S, Gao, Y, Zhang, Y, Wang, E, Xu, X and Lei, Z (2014) An entomopathogenic strain of Beauveria bassiana against Frankliniella occidentalis with no detrimental effect on the predatory mite Neoseiulus barkeri: evidence from laboratory bioassay and scanning electron microscopic observation. PLoS ONE 9, e84732.CrossRefGoogle ScholarPubMed
Wu, S, Gao, Y, Smagghe, G, Xu, X and Lei, Z (2016) Interactions between the entomopathogenic fungus Beauveria bassiana and the predatory mite Neoseiulus barkeri and biological control of their shared prey/host Frankliniella occidentalis. Biological Control 98, 4351.CrossRefGoogle Scholar
Xu, D, Ali, S, Huang, Z, Zhou, FC, Afzal, M and Bashir, MH (2009) Influence of the entomopathogenic fungus, Verticillium lecanii on the whitefly predator, Axinoscymnus cardilobus (Coleoptera: Coccinellidae) under laboratory conditions. Pakistan Journal of Zoology 41, 289295.Google Scholar
Zhao, SH (2000) Plant Chemical Protection. Beijing, China: China Agriculture Press.Google Scholar
Zheng, Y, Clercq, PD, Song, ZW, Li, DS and Zhang, BX (2017) Functional response of two Neoseiulus species preying on Tetranychus urticae Koch. Systematic and Applied Acarology 22, 10591068.CrossRefGoogle Scholar
Zhou, F, Ali, S and Huang, Z (2010) Influence of the entomopathogenic fungus Isaria fumosorosea on Axinoscymnus cardilobus (Coleoptera: Coccinellidae) under laboratory conditions. Biocontrol Science and Technology 20, 709722.CrossRefGoogle Scholar
Zimmermann, G (2007) Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Science and Technology 17, 553596.CrossRefGoogle Scholar