Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T10:05:15.614Z Has data issue: false hasContentIssue false

High species richness of Chironomidae (Diptera) in temporary flooded wetlands associated with high species turn-over rates

Published online by Cambridge University Press:  26 November 2009

J.O. Lundström*
Affiliation:
Department of Ecology and Evolution/Population Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden: Swedish Biological Mosquito Control Project, Nedre Dalälvens Utvecklings AB, Gysinge, Sweden
Y. Brodin
Affiliation:
Department of Ecology and Evolution/Population Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden:
M.L. Schäfer
Affiliation:
Department of Ecology and Evolution/Population Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden: Swedish Biological Mosquito Control Project, Nedre Dalälvens Utvecklings AB, Gysinge, Sweden
T.Z. Persson Vinnersten
Affiliation:
Department of Ecology and Evolution/Population Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden: Swedish Biological Mosquito Control Project, Nedre Dalälvens Utvecklings AB, Gysinge, Sweden
Ö. Östman
Affiliation:
Department of Ecology and Evolution/Population Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden:
*
*Author for correspondence Fax: +46 184716424 E-mail: [email protected]

Abstract

Species richness and species turn-over of Chironomidae was studied in irregularly flooded wetlands of the River Dalälven flood-plains in central Sweden. The chironomid fauna, sampled with emergence traps in six wetlands over six summers, contained as much as 135 species, and the cumulative species curves indicated that the regional species pool contain several more species. Recurrent irregular floods may have induced this high chironomid species richness and the high species turn-over in the temporary wetlands, as the dominance between terrestrial and aquatic species shifted between years. Half of the wetlands were treated with Bacillus thuringiensis var. israelensis (Bti) against larvae of the flood-water mosquito Aedes sticticus. These treatments had no significant effect on chironomid species richness, but there was a higher species turn-over between years of primarily low abundance species in the treated wetlands. The cumulative number of species was also higher in the Bti-treated experimental wetlands than in the untreated reference wetlands. Thus, Bti treatment against mosquito larvae seemed to have only small effects on chironomid species richness but seemed to increase the colonisation-extinction dynamics.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armitage, P.D., Cranston, P.S. & Pinder, L.C.V. (Eds) (1995) The Chironomidae: The Biology and Ecology of Non-Biting Midges. 574 pp. Chapman & Hall, London.CrossRefGoogle Scholar
Balla, S.A. & Davies, J.A. (1995) Seasonal variation in the macroinvertebrate fauna of wetlands of differing water regime and nutrient status on the Swan Coastal Plain, Western Australia. Hydrobiologia 299, 147161.CrossRefGoogle Scholar
Batzer, D.P. & Wissinger, S.A. (1996) Ecology of insect communities in nontidal wetlands. Annual Reviews of Entomology 41, 75–100.CrossRefGoogle ScholarPubMed
Batzer, D.P., Cooper, R. & Wissinger, S.A. (2006) Wetland animal ecology. pp. 242284in Batzer, D.P. & Sharitz, R.R. (Eds) Ecology of Freshwater and Estuarine Wetlands. Berkeley, CA, USA, University of California Press.CrossRefGoogle Scholar
Boisvert, M. & Boisvert, J. (2000) Effects of Bacillus thuringiensis var. israelensis on target and nontarget organisms: a review of laboratory and field experiments. Biocontrol Science and Technology 10, 517561.CrossRefGoogle Scholar
Buchanan, G.M., Grant, M.C., Sanderson, R.A. & Pearce-Higgins, J.W. (2006) The contribution of invertebrate taxa to moorland bird diets and the potential implications of land-use management. Ibis 148, 615628.CrossRefGoogle Scholar
Colwell, R.K. (2006) EstimateS: Statistical estimation of species richness and shared species from samples. Version 8. http://www.purl.oclc.org/estimates (accessed 17 August 2009)Google Scholar
De Jong, H., Saether, O.A. & Spies, M. (2008) Fauna Europaea, Chironomidae (Diptera). Fauna Europaea. Version 1.3. http://www.faunaeur.org (accessed 11 October 2008).Google Scholar
Delettre, Y.R. (1989) Effects of the duration and intensity of drought on abundance and phenology of adult Chironomidae (Diptera) in a shallow temporary pool. Archiv für Hydrobiologie 114, 383399.CrossRefGoogle Scholar
Dettinger-Klemm, P.-M.A. (2003) Chironomids (Diptera, Nematocera) of temporary pools – an ecological case study. PhD thesis, Phillips-Universität Marburg, Marburg, Germany.Google Scholar
Encarnação, J.A. & Dietz, M. (2006) Estimation of food intake and ingested energy of Daubenton's bats (Myotis daubentonii) during pregnancy and spermatogenesis. European Journal of Wildlife Research 52, 221227.CrossRefGoogle Scholar
Fillinger, U. (1998) Faunistische und ökotoxikologische Untersuchungen mit B.t.i. an Dipteren der nördlichen Oberrheinauen unter besonderer Berücksichtigung der Verbreitung und Phänologie einheimischer Zuckmückenarten (Chironomidae). PhD thesis, Ruprecht-Karls-Universität, Heidelberg, Germany.Google Scholar
Fittkau, E.J., Schlee, D. & Reiss, F. (1978) Chironomidae. pp. 404440in Ilies, J. (Ed.) Limnofauna Europaea. 2nd edn.Stuttgart, Germany, Gustav Fischer Verlag.Google Scholar
Gopal, B. & Junk, W.J. (2000) Biodiversity in wetlands. pp. 110in Gopal, B., Junk, W.J. & Davies, J.A. (Eds) Biodiversity in Wetlands: Assessment, Function and Conservation. Vol. 2, Leiden, The Netherlands, Backhuys Publishers.Google Scholar
Koskenniemi, E. & Paasivirta, L. (1987) The chironomid (Diptera) fauna in a Finnish reservoir during its first four years. Entomologica Scandinavica Supplement 29, 239246.Google Scholar
Krebs, C.J. (1999) Ecological Methodology. 2nd edn.620 pp, Menlo Park, CA, USA, Addison-Welsey Educational Publishers.Google Scholar
Laursen, K. (1978) Interspecific relationships between some insectivorous passerine species, illustrated by their diet during spring migration. Ornis Scandinavica 9, 178192.CrossRefGoogle Scholar
Leeper, D.A. & Taylor, B.E. (1998) Insect emergence from a South Carolina (USA) temporary wetland pond, with emphasis on the Chironomidae (Diptera). Journal of the North American Benthological Society 17, 5472.CrossRefGoogle Scholar
Lindegaard, C. (1997) Diptera Chironomidae, non-biting midges. pp. 265294in Nilsson, A.N. (Ed.) Aquatic Insects of North Europe: A Taxonomic Handbook. Vol. 2. Stenstrup, Denmark, Apollo Books.Google Scholar
Lundström, J.O., Schäfer, M.L., Petersson, E., Persson Vinnersten, T.Z., Landin, J. & Brodin, Y. (2009) Production of wetland Chironomidae (Diptera) and the effects of Bacillus thuringiensis israelensis for mosquito control. Bulletin of Entomological Research, doi:10.1017/S0007485309990137.Google ScholarPubMed
Moller Pillot, H.K.M. & Buskens, R.F.M. (1990) De larven der Nederlandse Chironomidae. Deel C: Autoekologie en verspreiding. Nederlandse Faunistische Mededelingen 1C, 185.Google Scholar
Östman, Ö., Lundström, J.O. & Persson Vinnersten, T.Z. (2008) Effects of mosquito larvae removal with Bacillus thuringiensis israelensis (Bti) on natural protozoan communities. Hydrobiologia 607, 231235.CrossRefGoogle Scholar
Paasivirta, L. (2009) Chironomidae (Diptera: Nematocera) in the biogeographical provinces of Finland. http://www.ymparisto.fi/download.asp?contentid=82649 (accessed 2 October 2009).Google Scholar
Reckendorfer, W., Keckeis, H., Winkler, G. & Schiemer, F. (1996) Water level fluctuations as a major determinant of chironomid community structure in the inshore zone of a large temperate river. Archiv für Hydrobiologie Supplementband 115, 39.Google Scholar
Reiss, F. (1968) Ökologische und systematische Untersuchungen an Chironomiden (Diptera) des Bodensees. Archiv für Hydrobiologie 64, 247323.Google Scholar
SAS Institute Inc. (2004) SAS version 9.1, Statistical Software. Cary, NC, USA.Google Scholar
Schäfer, M.L., Lundström, J.O. & Petersson, E. (2008) Comparison of mosquito (Diptera: Culicidae) faunas by wetland type and year in the lower River Dalälven region, central Sweden. Journal of Vector Ecology 33, 150157.CrossRefGoogle Scholar
Schnell, Ø.A. & Aagaard, K. (1996) Chironomidae Fjærmygg. pp. 210248in Limnofauna Norvegica Aagaard, K. & Dolmen, D. (Eds) Katalog over Norsk Ferskvannsfauna. Trondheim, Norway, Tapir.Google Scholar
Service, M.W. (1993) Mosquito Ecology: Field Sampling Methods. 2nd edn.988 pp. London, UK, Chapman & Hall.Google Scholar
Titmus, G. (1979) The emergence of midges (Diptera: Chironomidae) from a wet gravel-pit. Freshwater Biology 9, 165179.CrossRefGoogle Scholar
Tocker, K., Schiemer, F. & Ward, J.V. (1998) Conservation by restoration: the management concept for a river floodplain system in the Danube River in Austria. Aquatic Conservation 8, 7186.3.0.CO;2-D>CrossRefGoogle Scholar
Tuiskunen, J. & Lindeberg, B. (1986) Chironomidae (Diptera) from Fennoscandia north of 68oN, with a description of ten new species and two new genera. Annales Zoologici Fennici 23, 361393.Google Scholar
Vaughan, N. (1997) The diets of British bats (Chiroptera). Mammal Revue 27, 7794.CrossRefGoogle Scholar
Vignes, J.C. (1995) Résultats preliminaires sur l'alimentation naturelle de la granouille rousse, Rana temporaria L. a l'emeregence. Munibe 47, 107110.Google Scholar
Wiederholm, T., Danell, K. & Sjöberg, K. (1977) Emergence of chironomids from a small man-made lake in northern Sweden. Norwegian Journal of Entomology 24, 99–105.Google Scholar