Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T10:08:45.372Z Has data issue: false hasContentIssue false

Genetic poverty of an extremely specialized wetland species, Nehalennia speciosa: implications for conservation (Odonata: Coenagrionidae)

Published online by Cambridge University Press:  24 November 2009

R. Bernard*
Affiliation:
Department of General Zoology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
T. Schmitt
Affiliation:
Department of Biogeography, Trier University, Wissenschaftspark, Trier-Petrisberg Gebäude 24, D-54286 Trier, Germany
*
*Author for correspondence Fax: (0048) 618295636 E-mail: [email protected]

Abstract

Oligo- and mesotrophic wetlands, such as bogs, fens and swamps, have become more and more restricted in Europe, and wetland species related to them have increasingly been threatened. Due to increasing habitat fragmentation, the exchange of individuals of these species among sites and, as a consequence, gene flow has been reduced or even eliminated. Therefore, we analysed the genetic structure of 11 populations of an endangered stenotopic damselfly, Nehalennia speciosa (Odonata: Coenagrionidae), in Poland and Lithuania by means of allozyme electrophoresis of 14 gene loci. The overall genetic diversity of all populations was low (A: 1.32; H: 2.6%; Ptot: 29.2%), and no significant differences were observed among the different groupings of populations (degree of fragmentation, habitat type and size, population size). The genetic differentiation among populations was also low (FST: 2.0%) and no regional groups were detected. A low degree of isolation by distance was observed for genetic distances. Taking into account these results, the conservation effort for this species should be focused on large local populations and not necessarily on metapopulation structures. Furthermore, N. speciosa could be (re-)introduced in extinct patches and seemingly suitable localities. Genetically, such relocations should be feasible due to the generally high genetic homogeneity of populations.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bauer, G. (1988) Threats to the freshwater pearl mussel Margaritifera margaritifera L. in Central Europe. Biological Conservation 45, 239253.CrossRefGoogle Scholar
Bereczki, J., Pecseny, K., Peregovits, L. & Varga, Z. (2005) Pattern of genetic differentiation in the Maculinea alcon species group (Lepidoptera, Lycaenidae) in Central Europe. Journal of Zoological Systematics and Evolutionary Research 43, 157165.CrossRefGoogle Scholar
Bernard, R. & Wildermuth, H. (2005a) Nehalennia speciosa (Charpentier, 1840) in Europe: a case of a vanishing relict (Zygoptera: Coenagrionidae). Odonatologica 34, 335378.Google Scholar
Bernard, R. & Wildermuth, H. (2005b) Verhaltensbeobachtungen an Nehalennia speciosa in Bezug auf Raum, Zeit und Wetter (Odonata: Coenagrionidae). Libellula 24, 129153.Google Scholar
Bernard, R. & Wildermuth, H. (2006) Nehalennia speciosa. In IUCN 2009, IUCN Red List of Threatened Species Version 2009.1. http://www.iucnredlist.org/details/60265/0 (accessed September 2009).Google Scholar
Bernard, R., Buczyński, P. & Tończyk, G. (2002) Present state, threats and conservation of dragonflies (Odonata) in Poland. Nature Conservation, Krakow 59, 5371.Google Scholar
Bragg, O. & Lindsay, R. (Eds) (2003) Strategy and Action Plan for Mire and Peatland Conservation in Central Europe. The Central European Peatland Project (CEPP), Publication 18, 93 pp. Wageningen, The Netherlands, Wetlands International.Google Scholar
Britten, H.B., Brussard, P.F., Murphy, D.D. & Austin, G.T. (1994) Colony isolation and isozyme variability of the western seep fritillary, Speyeria nokomis apacheana (Nymphalidae), in the western Great Basin. Great Basin Naturalist 54, 97105.Google Scholar
Carchini, G., Chiarotti, F., di Domenico, M., Mattoccia, M. & Paganotti, G. (2001) Fluctuating asymmetry, mating success, body size and heterozygosity in Coenagrion scitulum (Rambur) (Odonata: Coenagrionidae). Animal Behaviour 61, 661669.CrossRefGoogle Scholar
Corbet, P.S. (1999) Dragonflies: Behaviour and Ecology of Odonata. 829 pp. Great Horkesley, UK, Harley Books.Google Scholar
Debinski, D.M. (1994) Genetic diversity assessment in a metapopulation of the butterfly Euphydryas gillettii. Heredity 70, 2530.Google Scholar
de Block, M., Geenen, S., Jordaens, K., Backeljau, T. & Stoks, R. (2005) Spatiotemporal allozyme variation in the damselfly, Lestes viridis (Odonata: Zygoptera): gene flow among permanent and temporal ponds. Genetica 124, 137144.CrossRefGoogle ScholarPubMed
de Lattin, G. (1967) Grundriß der Zoogeographie. 602 pp. Jena, Germany, Verlag Gustav Fischer.Google Scholar
Dennis, R.L.H. & Schmitt, T. Faunal structures, phylogeography and historical inference. In Settele, J., Shreeve, T.G., Konvicka, M. & van Dyck, H. (Eds) Ecology of Butterflies in Europe. Cambridge, UK, Cambridge University Press, in press.Google Scholar
Descimon, H. (1995) La conservation des Parnassius en France: aspects zoogéographiques, écologiques, démographiques et génétiques. Editions OPIE 1, 154.Google Scholar
Felsenstein, J. (1993) PHYLIP (Phylogeny Inference Package) Ver. 3.5.c. Seattle, Washington, USA, Department of Genetics, University of Washington.Google Scholar
Fischer, M. & Matthies, D. (1998) RAPD variation in relation to population size and plant fitness in the rare Gentianella germanica (Gentianaceae). American Journal of Botany 85, 811819.CrossRefGoogle ScholarPubMed
Frankham, R., Ballou, J.D. & Briscoe, D.A. (2002) Introduction to Conservation Genetics. 617 pp. Cambridge, UK, Cambridge University Press.CrossRefGoogle Scholar
Gadeberg, R.M.E. & Boomsma, J.J. (1997) Genetic population structure of the large blue butterfly Maculinea alcon in Denmark. Journal of Insect Conservation 1, 99111.CrossRefGoogle Scholar
Goudet, J. (1995) FSTAT (Version 1.2): A computer program to calculate F-statistics. Journal of Heredity 86, 485486.CrossRefGoogle Scholar
Graur, D. (1985) Gene diversity in Hymenoptera. Evolution 39, 190199.CrossRefGoogle ScholarPubMed
Habel, J.C., Schmitt, T., Härdtle, W., Lütkepohl, M. & Assmann, T. (2007) Habitat quality and turn-over dynamics of the endangered Alcon Blue Butterfly Maculinea alcon in northern Germany (Lepidoptera: Lycaenidae). Ecological Entomology 32, 536543.CrossRefGoogle Scholar
Habel, J.C., Zachos, F.E., Finger, A., Meyer, M., Louy, D., Assmann, T. & Schmitt, T. (2009) Unprecedented long-term genetic monomorphism in an endangered relict butterfly species. Conservation Genetics (DOI 10.1007/s10592-008-9744-5).CrossRefGoogle Scholar
Hanski, I. (1999) Metapopulation Ecology. 332 pp. Oxford, UK, Oxford University Press.CrossRefGoogle Scholar
Hansson, B. & Westerberg, L. (2002) On the correlation between heterozygosity and fitness in natural populations. Molecular Ecology 11, 24672474.CrossRefGoogle ScholarPubMed
Haubrich, K. & Schmitt, T. (2007) Cryptic differentiation in alpine-endemic, high-altitude butterflies reveals down-slope glacial refugia. Molecular Ecology 16, 36433658.CrossRefGoogle ScholarPubMed
Hebert, P.D.N. & Beaton, M.J. (1993) Methodologies for Allozyme Analysis using Cellulose Aacetat Electrophoresis. 32 pp. Beaumont, TX, USA, Helena Laboratories.Google Scholar
Küster, H. (1999) Geschichte der Landschaft in Mitteleuropa. Von der Eiszeit bis zur Gegenwart. 423 pp. München, Germany, Beck.Google Scholar
Louis, E.J. & Dempster, E.R. (1987) An exact test for Hardy-Weinberg and multiple alleles. Biometrics 43, 805811.CrossRefGoogle ScholarPubMed
Louy, D., Habel, J.C., Schmitt, T., Meyer, M., Assmann, T. & Müller, P. (2007) Strongly diverging population genetic patterns of three skipper species: isolation, restricted gene flow and panmixis. Conservation Genetics 8, 671681.CrossRefGoogle Scholar
Luijten, S.H., Dierick, A., Gerard, J., Oostermeijer, B., Raijmann, L.E.L. & Den Nijs, H.C.M. (2000) Population size, genetic variation, and reproductive success in a rapidly declining, self-compatible perennial (Arnica montana) in The Netherlands. Conservation Biology 14, 17761787.Google Scholar
Marchi, A., Addis, G., Hermosa, V.E. & Crnjar, R. (1996) Genetic divergence and evolution of Polyommatus coridon gennargenti (Lepidoptera, Lycaenidae) in Sardinia. Heredity 77, 1622.CrossRefGoogle Scholar
Matern, A., Desender, K., Drees, C., Gaublomme, E., Paill, W. & Assmann, T. (2009) Genetic diversity and population structure of the endangered insect species Carabus variolosus in its western distribution range: Implications for conservation. Conservation Genetics 10, 391405.CrossRefGoogle Scholar
Nei, M. (1972) Genetic distance between populations. American Naturalist 106, 283292.CrossRefGoogle Scholar
Oostermeijer, J.G.B., van Eijck, M.W., van Leeuwen, N.C. & den Nijs, J.C.M. (1995) Analysis of the relationship between allozyme heterozygosity and fitness in the rare Gentiana pneumonanthe L. Journal of Evolutionary Biology 8, 739759.CrossRefGoogle Scholar
Pauler-Fürste, R., Kaule, G. & Settele, J. (1996) Aspects of the population vulnerability of the large blue butterfly, Glaucopsyche (Maculinea) arion, in south-western Germany. pp. 275281in Settele, J., Margules, C.R., Poschlod, P. & Henle, K. (Eds) Species Survival in Fragmented Landscapes. Dordrecht, The Netherlands, Kluwer Academic Publishers.CrossRefGoogle Scholar
Pokryszko, B.M. (2003) Vertigo of continental Europe – autecology, threats and conservation status (Gastropoda, Pulmonata, Vertiginidae). Heldia 5, 1326.Google Scholar
Ramirez, M.G. & Saunders, T.A. (1999) Allozyme diversity in non-social spiders: pattern, process and conservation implications. Journal of Insect Conservation 3, 327340.CrossRefGoogle Scholar
Reed, D.H. & Frankham, R. (2003) Correlation between fitness and genetic diversity. Conservation Biology 17, 230237.CrossRefGoogle Scholar
Rowe, G., Beebee, T.J.C. & Burke, T. (1999) Microsatellite heterozygosity, fitness, and demography in natterjack toads Bufo calamita. Animal Conservation 2, 8592.CrossRefGoogle Scholar
Saccheri, I., Kuussaari, M., Kankare, M., Vikman, P., Fortelius, W. & Hanski, I. (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392, 491494.CrossRefGoogle Scholar
Sahlén, G., Bernard, R., Cordero Rivera, A., Ketelaar, R. & Suhling, F. (2004) Critical species of Odonata in Europe. International Journal of Odonatology 7, 385398.CrossRefGoogle Scholar
Saitou, N. & Nei, M. (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406425.Google Scholar
Schmitt, T. (2007) Molecular biogeography of Europe: Pleistocene cycles and Postglacial trends. Frontiers in Zoology 4, 11.CrossRefGoogle ScholarPubMed
Schmitt, T. & Besold, J.Up-slope movements and large scale expansions: The taxonomy and biogeography of the Coenonympha arcania-darwiniana-gardetta butterfly species complex. Zoological Journal of the Linnean Society, in press.Google Scholar
Schmitt, T. & Haubrich, K. (2008) The genetic structure of the mountain forest butterfly Erebia euryale unravels the late Pleistocene and postglacial history of the mountain coniferous forest biome in Europe. Molecular Ecology 17, 21942207.CrossRefGoogle ScholarPubMed
Schmitt, T. & Hewitt, G.M. (2004) The genetic pattern of population threat and loss: a case study of butterflies. Molecular Ecology 13, 2131.CrossRefGoogle Scholar
Schmitt, T. & Seitz, A. (2004) Low diversity but high differentiation: the population genetics of Aglaope infausta (Zygaenidae: Lepidoptera). Journal of Biogeography 31, 137144.CrossRefGoogle Scholar
Schmitt, T., Cizek, O. & Konvicka, M. (2005a) Genetics of a butterfly relocation: large, small and introduced populations of the mountain endemic Erebia epiphron silesiana. Biological Conservation 123, 1118.CrossRefGoogle Scholar
Schmitt, T., Varga, Z. & Seitz, A. (2005b) Are Polyommatus hispana and Polyommatus slovacus bivoltine Polyommatus coridon (Lepidoptera: Lycaenidae)? – The discriminatory value of genetics in taxonomy. Organisms, Diversity & Evolution 5, 297307.CrossRefGoogle Scholar
Schneider, S., Roessli, D. & Excoffier, L. (2000) Arlequin ver. 2.000 – A software for population genetics data analysis. Genève, Switzerland, Anthropology, University of Genève.Google Scholar
Siegismund, H.R. (1993) G-Stat, ver. 3, Genetical statistical programs for the analysis of population data. Horsholm, Denmark, The Arboretum, Royal Veterinary and Agricultural University.Google Scholar
Thomas, J.A. & Morris, M.G. (1994) Patterns, mechanisms and rates of decline among UK invertebrates. Philosophical Transactions of the Royal Society of London, Series B 344, 4754.Google Scholar
Thomas, J.A., Bourn, N.A.D., Clarke, R.T., Stewart, K.E., Simcox, D.J., Pearman, G.S., Curtis, R. & Goodger, B. (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proceedings of the Royal Society of London, Series B 268, 17911796.CrossRefGoogle ScholarPubMed
WallisDeVries, M.F., Poschlod, P. & Willems, J.H. (2002) Challenges for the conservation of calcareous grasslands in northwestern Europe: integrating the requirements of flora and fauna. Biological Conservation 104, 265273.CrossRefGoogle Scholar
Weir, B.S. (1991) Genetic Data Analysis. 377 pp. Sunderland, MA, USA, Sinauer.Google Scholar
Westemeier, R.L., Brawn, J.D., Simpson, S.A., Esker, T.L., Jansen, R.W., Walk, J.W., Eric, L., Kershner, E.L., Bouzat, J.L. & Paige, K.N. (1998) Tracking the long-term decline and recovery of an isolated population. Science 282, 16951698.CrossRefGoogle ScholarPubMed