Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T16:31:03.464Z Has data issue: false hasContentIssue false

Genetic diversity, geographical range and origin of Bemisia tabaci (Hemiptera: Aleyrodidae) Indian Ocean Ms

Published online by Cambridge University Press:  15 April 2011

H. Delatte*
Affiliation:
CIRAD, UMR PVBMT, Pôle de Protection des Plantes 7 chemin de l'IRAT, 97410 Saint Pierre, La Réunion, France
H. Holota
Affiliation:
CIRAD, UMR PVBMT, Pôle de Protection des Plantes 7 chemin de l'IRAT, 97410 Saint Pierre, La Réunion, France
B.H. Warren
Affiliation:
CIRAD, UMR PVBMT, Pôle de Protection des Plantes 7 chemin de l'IRAT, 97410 Saint Pierre, La Réunion, France
N. Becker
Affiliation:
MNHN, UMR OSEB 7205 (MNHN/CNRS), CP 50, 57 rue Cuvier, 75231 Paris Cedex 05, France
M. Thierry
Affiliation:
CIRAD, UMR PVBMT, Pôle de Protection des Plantes 7 chemin de l'IRAT, 97410 Saint Pierre, La Réunion, France
B. Reynaud
Affiliation:
CIRAD, UMR PVBMT, Pôle de Protection des Plantes 7 chemin de l'IRAT, 97410 Saint Pierre, La Réunion, France
*
*Author for correspondence Fax: + 262 262 49 92 93 E-mail: [email protected]

Abstract

The whitefly Bemisia tabaci is a pest vector of begomoviruses on crops worldwide. Bemisia tabaci is composed of a complex of cryptic species which barely interbreed. An exception is the Ms from the South West Indian Ocean (SWIO), which crosses in low proportions with the exotic B. The Ms, together with B and Q is part of the same phylogenetic clad. To infer the genetic structure, the geographical range and putative origin of this putative species, microsatellite data and mitochondrial DNA (cytochrome oxydase I) sequences were analysed on an extensive sample set, including all the islands of the region and samples from mainland Africa. Only B and Ms populations were detected across these islands. The exotic B was found only on the islands of Réunion and Mauritius, whereas the Ms is found on all the SWIO islands. Very high isolation by distance was found for the Ms populations between islands of the SWIO, suggesting a long period of presence in this region. Ms populations from mainland Africa had a higher COI diversity than the Ms of the SWIO islands. This diversity is correlated with size and geological ages of the SWIO islands. The population genetic data obtained are in accordance with an origin of Ms in Africa, followed by its expansion and evolution across the SWIO islands prior to human arrival, confirming the status of Ms as indigenous in the SWIO islands.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, P.K., Cunningham, A.A., Patel, N.G., Morales, F.J., Epstein, P.R. & Daszak, P. (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution 19, 535544.CrossRefGoogle ScholarPubMed
Barton, N.H. & Slatkin, M. (1986) A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity 56, 409415.CrossRefGoogle Scholar
Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N. & Bonhomme, F. (1996–2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier II, Montpellier (France).Google Scholar
Boykin, L.M., Shatters, R.G.J., Rosell, R.C., McKenzie, C.L., Bagnall, R.A., De Barro, P.J. & Frohlich, D.R. (2007) Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. Molecular and Phylogenetic Evolution 16, 13061319.CrossRefGoogle Scholar
Carlsson, J. (2008) Effects of microsatellite null alleles on assignment testing. Journal of Heredity 99, 616623.CrossRefGoogle ScholarPubMed
Chapuis, M.P. & Estoup, A. (2007) Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution 24, 621631.CrossRefGoogle ScholarPubMed
Chen, C., Durand, E., Forbes, F. & François, O. (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Molecular Ecology Notes 7, 747756.CrossRefGoogle Scholar
Dalmon, A., Halkett, F., Granier, M., Delatte, H. & Peterschmitt, M. (2008) Genetic structure of the invasive pest Bemisia tabaci: evidence of limited but persistent genetic differentiation in glasshouse populations. Heredity 100, 316325.CrossRefGoogle ScholarPubMed
De Barro, P.J., Scott, K.D., Graham, G.C., Lange, C.L. & Schutze, M.K. (2003) Isolation and characterization of microsatellite loci in Bemisia tabaci. Molecular Ecology Notes 3, 4043.CrossRefGoogle Scholar
De Barro, J., Liu, S., Boykin, L. & Dinsdale, A. (2011) Bemisia tabaci: A Statement of Species Status. Annual Review of Entomology 56, 119.CrossRefGoogle ScholarPubMed
Delatte, H., Martin, D.P., Naze, F., Golbach, R.W., Reynaud, B., Peterschmitt, M. & Lett, J.M. (2005a) South West Indian Ocean islands tomato begomovirus populations represent a new major monopartite begomovirus group. Journal of General Virology 86, 15331542.CrossRefGoogle ScholarPubMed
Delatte, H., Reynaud, B., Granier, M., Thornary, L., Lett, J.M., Goldbach, R. & Peterschmitt, M. (2005b) A new silverleaf-inducing biotype Ms of Bemisia tabaci (Hemiptera: Aleyrodidae) indigenous of the islands of the south-west Indian Ocean. Bulletin of Entomological Research 95, 2935.CrossRefGoogle ScholarPubMed
Delatte, H., David, P., Granier, M., Lett, J.M., Goldbach, R., Peterschmitt, M. & Reynaud, B. (2006) Microsatellites reveal the coexistence and genetic relationships between invasive and indigenous whitefly biotypes in an insular environment. Genetical Research 87, 109124.CrossRefGoogle Scholar
Delatte, H., Lett, J.M., Lefeuvre, P., Reynaud, B. & Peterschmitt, M. (2007) An insular environment before and after TYLCV introduction. pp. 1323 in Czosnek, H. (Ed.) Tomato Yellow Leaf Curl Virus Disease: Management, Molecular Biology, Breeding for Resistance. Dordrecht, The Netherlands, Springer, Dordrecht.CrossRefGoogle Scholar
Delatte, H., Duyck, P.F., Triboire, A., David, P., Becker, N., Bonato, O. & Reynaud, B. (2009) Differential invasion success among biotypes: case of Bemisia tabaci. Biological Invasions 11, 10591070.CrossRefGoogle Scholar
Dinsdale, A., Cook, L., Riginos, C., Buckley, Y. & Barro, P. (2010) Refined Global Analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) Mitochondrial Cytochrome Oxidase 1 to Identify Species Level Genetic Boundaries. Annals of the Entomological Society of America 103, 196208.CrossRefGoogle Scholar
Evanno, G., Regnaut, S. & Goudet, J. (2005) Detecting the number of clusters of individuals using the software STRUCTURE : a simulation study. Molecular ecology 14, 26112620.CrossRefGoogle ScholarPubMed
Excoffier, L., Laval, G., Schneidern, S. (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 4750. Available online at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658868/.Google Scholar
Frohlich, D.R., Torres-Jerez, I., Bedford, I.D., Markham, P.G. & Brown, J.K. (1999) A phylogeographical analysis of the Bemisia tabaci species complex based on mitochondrial DNA markers. Molecular Ecology 8, 16831691.CrossRefGoogle ScholarPubMed
Goudet, J. (2001) F stat, a Program to Estimate and Test Gene Diversities and Fixation Indices Version 2.9.3. Available online at http://www2.unil.ch/popgen/softwares/fstat.htm (updatedfrom Goudet (1995) (accessed 8 February 2011).Google Scholar
Guirao, P., Beitia, F. & Cenis, J.L. (1997) Biotype determination of Spanish populations of Bemisia tabaci (Hemiptera: Aleyrodidae). Bulletin of Entomological Research 87, 587593.CrossRefGoogle Scholar
Jakobsson, M. & Rosenberg, N. (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 18011806.CrossRefGoogle ScholarPubMed
Jones, D. (2003) Plant viruses transmitted by whiteflies. European Journal of Plant Pathology 109, 195219.CrossRefGoogle Scholar
Jones, R.E. & Kitching, R.L. (1981) Why an ecology of pests? p. 254 in Jones, R.L.K.R.E. (Ed.) The Ecology of Pests: Some Australian Case Histories. Melbourne, Australia, CSIRO.Google Scholar
Lefeuvre, P., Martin, D., Hoareau, M., Naze, F., Delatte, H., Becker, N., Reynaud, B. & Lett, J.M. (2007) Begomovirus ‘melting pot’ in the South West Indian Ocean Islands: molecular diversity and evolution through recombination. Journal of General Virology 88, 34583468.CrossRefGoogle ScholarPubMed
Nei, M. & Gojobori, T. (1986) Simple methods for estimating the number of synonymous and nonsynonymous nucleotide substitutions. Molecular Biology and Evolution 3, 418423.Google ScholarPubMed
Perrier, X., Flori, A. & Bonnot, F. (2003) Data analysis methods. pp. 4376 in Hamon, P., Seguin, M., Perrier, X. & Glaszmann, J.C. (Eds) Genetic Diversity of Cultivated Tropical Plants. Montpellier, France, Enfield, Science Publishers.Google Scholar
Pritchard, J.K., Stephens, M. & Donnelly, P. (2000) Inference of population structure using multilocus genotype data. Genetics 155, 945959.CrossRefGoogle ScholarPubMed
R Development Core Team (2004) R: A language and environment for statistical computing. Vienna, Austria, R Foundation for Statistical Computing.Google Scholar
Rabinowitz, P.D., Coffin, M.F. & Falvey, D. (1983) The separation of Madagascar and Africa. Science 220, 6769.CrossRefGoogle ScholarPubMed
Raymond, M. & Rousset, F. (1995) GENEPOP (version 3.3), population genetics software for exact tests and ecumenicism. Journal of Heredity 86, 248249.CrossRefGoogle Scholar
Ribeiro, S.G., Ambrozevicius, L.P., Avila, A.C., Bezerra, I.C., Calegario, R.F., Fernandes, J.J., Lima, M.F., Mello, R.N.D., Rocha, H. & Zerbini, F.M. (2003) Distribution and genetic diversity of tomato-infecting begomoviruses in Brazil. Archives of Virology 148, 281295.CrossRefGoogle ScholarPubMed
Rosenberg, N. (2004) Distruct: a program for the graphical display of population structure. Molecular Ecology Notes 4, 137138.CrossRefGoogle Scholar
Rousset, F. (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 12191228.CrossRefGoogle ScholarPubMed
Rozas, J., Sanchez-Delbarrio, J.C., Messeguer, X. & Rozas, R. (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 24962497.CrossRefGoogle ScholarPubMed
Sseruwagi, P., Legg, J.P., Maruthi, M.N., Colvin, J., Rey, M.E.C. & Brown, J. (2005) Genetic diversity of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) populations and presence of the B biotype and a non-B biotype that can induce silverleaf symptoms in squash, in Uganda. Annals of Applied Biology 147, 253265.CrossRefGoogle Scholar
Tahiri, A., Sekkat, A., Bennani, A., Granier, M., Delvare, G. & Peterschmitt, M. (2006) Distribution of tomato-infecting begomoviruses and Bemisia tabaci biotypes in Morocco. Annals of Applied Biology 149, 175186.CrossRefGoogle Scholar
Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.CrossRefGoogle ScholarPubMed
Warren, B.H., Bermingham, E., Prys-Jones, R.P. & Thebaud, C. (2005) Tracking island colonization history and phenotypic shifts in Indian Ocean bulbuls (Hypsipetes: Pycnonotidae). Biological Journal of the Linnean Society 85, 271287.CrossRefGoogle Scholar
Weir, B.S. & Cockerham, C.C. (1984) Estimating F-statistics for the analysis of population structure. Evolution 38, 13581370.Google ScholarPubMed
Worner, S.P. (2002) Predicting the invasive potential of exotic insects. pp. 119137 in Schwalbe, G.H.C.P. (Ed.) Invasive Arthropods and Agriculture: Problems and Solutions. Enfield, NH, USA, Science Publishers, Inc.Google Scholar
Xu, J., De Barro, P.J. & Liu, S.S. (2010) Reproductive incompatibility among genetic groups of Bemisia tabaci supports the proposition that the whitefly is a cryptic species complex. Bulletin of Entomological Research 100, 359366.CrossRefGoogle ScholarPubMed