Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T09:06:32.808Z Has data issue: false hasContentIssue false

Genetic control of Delia antiqua (Meigen) (Diptera: Anthomyiidae). Sensitivity to diapause interfering with a field-cage experiment using a homozygous chromosomal translocation

Published online by Cambridge University Press:  10 July 2009

A. S. Robinson
Affiliation:
Association Euratom ITAL, 6700 AA Wageningen, The Netherlands
M. Herfst
Affiliation:
Association Euratom ITAL, 6700 AA Wageningen, The Netherlands
L Vosselman
Affiliation:
Department of Genetics, Agricultural University, Wageningen, The Netherlands

Abstract

A translocation homozygous strain (TT) of Delia antiqua (Mg) was released into a field cage in Wageningen, The Netherlands, together with a standard laboratory strain (++). During the course of the season, the fecundity and fertility of the adults were measured together with the karyotype frequencies (TT+; T+; ++) of the F1 progeny. No selective disadvantage of the translocation karyotypes was observed. However, only four F1 adults emerged in the field cage; therefore a sample of pupae was removed from the cage, and it was shown that nearly 100% of the surviving pupae had entered diapause. This figure was confirmed from the remainder of the pupae. The fertility of eggs from the emerging adults was reduced to 54%, compared with the standard fertility of nearly 90%, but because of the diapause response of the strains used, the effect of this reduced fertility in the field-cage population could not be followed. The reasons for the change in diapause response of the laboratory strains are discussed and suggestions made as to how this could be prevented. The report highlights the importance of quality in control techniques involving translocations.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barry, B. D. & Adkisson, P. L. (1966). Certain aspects of the genetic factors involved in the control of the larval diapause of the pink bollworm.—Ann. ent. Soc. Am. 59, 122125.CrossRefGoogle Scholar
Branson, T. F. (1976). The selection of a non-diapause strain of Diabrotica virgifera (Coleoptera: Chrysomelidae).—Entomologia exp. appl. 19, 148154.CrossRefGoogle Scholar
Cousserans, J. & Guille, G. (1974). Expérience de lutte génétique contre Culex pipiens dans la région de Monpellier. Synthése de quatre années d’ observations.—Bull. biol. Fr. Belg. 108, 253257.Google Scholar
Curtis, C. F. (1968). Possible use of translocations to fix desirable genes in insect pest populations.—Nature, Lond. 218, 368369.CrossRefGoogle ScholarPubMed
Curtis, C. F., Lorimer, N., Rai, K. S., Suguna, S. G., Uppal, O. K., Kazmi, S. J., Hallinan, E.. & Dietz, K. (1976). Simulation of alternative genetic control systems for Aedes aegypti in outdoor cages and with a computer.—J. Genet. 62, 101115.CrossRefGoogle Scholar
Foster, G. G.. & Whitten, M. J. (1974). The development of genetic methods of controlling the Australian sheep blowfly Lucilia cuprina.—pp. 1943in Pal, R. & Whitten, M. J. (Eds.). The use of genetics in insect control.—241 pp. North-Holland, Elsevier.Google Scholar
Foster, G. G., Whitten, M. J., Vogt, W. G., Woodburn, T. L. & Arnold, J. T. (1978). Larval release method for genetic control of the Australian sheep blowfly, Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae).—Bull. ent. Res. 68, 7583.Google Scholar
Hayes, D. K., Sullivan, W. N., Oliver, M. Z. & Schechter, M. S. (1970). Photoperiod manipulation of insect diapause: a method of pest control?Science, N. Y. 169, 382383.Google Scholar
Herzog, G. A. & Phillips, J. R. (1974). Selection for a nondiapause strain of the bollworm Heliothis zea (Lepidoptera: Noctuidae).—Environ. Entomol. 3, 525527.Google Scholar
Hoy, M. (1978). Variability in diapause attributes of insects and mites: some evolutionary and practical implications.—pp. 101127in Dingle, H. (Ed.). Evolution of insect migration and diapause.—174 pp. New York, Springer-Verlag.CrossRefGoogle Scholar
Kelderman, W. (1972). Control of the onion fly, Hylemya antiqua, using the sterile male technique. A first release experiment and diapause research [in Dutch].—66 pp. Doctoraalverslag, Agric. Univ., Wageningen.Google Scholar
Klassen, W., Knipling, E. F. & McGuire, J. U. Jr. (1970). The potential for insect-population suppression by dominant conditional lethal traits.—Ann. ent. Soc. Am. 63, 238255.CrossRefGoogle Scholar
Krysan, J. T. & Branson, T. F. (1977). Inheritance of diapause intensity in Diabrotica virgifera.—J. Hered. 68, 415417.CrossRefGoogle Scholar
Laven, H. (1969). Eradicating mosquitoes using translocations.—Nature, Lond. 221, 958959.CrossRefGoogle ScholarPubMed
Loosjes, M. (1976). Ecology and genetic control of the onion fly, Delia antiqua (Meigen).—179 pp. Wageningen, PUDOC.Google Scholar
Lorimer, N., Lounibos, L. P. & Petersen, J. L. (1976). Field trials with a translocation homozygote in Aedes aegypti for population replacement.—J. econ. Ent. 69, 405409.CrossRefGoogle ScholarPubMed
Perron, J. P. & Lafrance, J. (1961). Notes on the life-history of the onion maggot, Hylemya antiqúa (Meig.) (Diptera: Anthomyiidae) reared in field cages.—Can. Ent. 93, 101106.Google Scholar
Ramakers, P. M. J. (1973). Diapause induction in the onion fly Hylemya antiqua (Meigen) under the influence of photoperiod and temperature [in Dutch].—37 pp. Doctoraalverslag, Agric. Univ., Wageningen.Google Scholar
Ring, R. A. (1971). Variations in the photoperiodic reaction controlling diapause induction in Lucilia caesar L. (Diptera: Calliphoridae).—Can. J. Zool. 49, 137142.CrossRefGoogle Scholar
Robinson, A. S. (1976). Progress in the use of chromosomal translocation for insect pest control.—Biol. Rev. 51, 124.CrossRefGoogle Scholar
Robinson, A. S. (1977). Genetic control of Hylemya antiqua. 1. X-ray induced effects in the F0 and F1 generations.—Mutat. Res. 42, 7988.Google Scholar
Robinson, A. S.. & Van Heemert, C. (1975). Preliminary radiobiological studies on Hylemya antiqua Meigen and data on three radiation-induced (0.5 krad) chromosomal rearrangements.—pp. 375385 in Sterility principle for insect control 1974.—622 pp. Vienna, International Atomic Energy Agency. (Proceedings Series STI/PUB/377.)Google Scholar
Robinson, A. S. & Zurlini, G. (1979). The response of two strains of Hylemya antiqua to a constant and an alternating temperature regime.—Can. Ent. 111, 12071218.Google Scholar
Seawright, J. A., Kaiser, P. E., Dame, D. A. & Willis, N. L. (1975). Field competitiveness of males of Aedes aegypti (L.) heterozygous for a translocation.—Mosquito News 35, 3033.Google Scholar
Serebrovski, A. S. (1940). On the possibility of a new method for the control of insect pests [in Russian].—Zool. Zh. 19, 618630.Google Scholar
Suguna, S. G., Curtis, C. F., Kazmi, S. J., Singh, K. R. P., Radzan, R. K. & Sharma, V. P. (1977). Distorter-double translocation heterozygote systems in Aedes aegypti.—Genetica 47, 117123.Google Scholar
Terwedow, H. A., Jr., Asman, S. M., McDonald, P. T., Nelson, R. L. & Reeves, W. C. (1977). Mating competitiveness of Culex tarsalis double translocation heterozygote males in laboratory and field cage trials.—Ann. ent. Soc. Am. 70, 849854.Google Scholar
Ticheler, J. (1971). Rearing of the onion fly, Hylemya antiqua (Meigen), with a view to release of sterilized insects.—pp. 341346in Sterility principle for insect control or eradication.—542 pp. Vienna, International Atomic Energy Agency. (Proceedings Series STI/PUB/265.)Google Scholar
Van Heemert, C. (1977). Isolation of a homozygous X-linked translocation stock with two additional sex-chromosomes in the onion fly, Hylemya antiqua (Meigen).—Theor. Appl. Genet. 49, 123132.CrossRefGoogle ScholarPubMed
Van Heemert, C. & Wijnands-Stär, K. J. A. (1975). Radiation induced semi-sterility for genetic control purposes in the onion fly Hylemya antiqua (Meigen). II. Induction, isolation and cytogenetic analysis of new chromosomal rearrangements.—Theor. appl. Genet. 45, 343354.Google Scholar
Varley, G. C. & Gradwell, G. R. (1960). Key factors in population studies.—J. Anim. Ecol. 29, 339401.CrossRefGoogle Scholar
Vosselman, L. B. (in press). Studies on fitness of translocation homozygotes in cage experiments with the onion fly, Hylemya antiqua (Meigen).—Theor. Appl. Genet.Google Scholar
Wagoner, D. E., Morgan, P. B., Labrecque, G. C. & Johnson, O. A. (1973). Genetic manipulation used against a field population of house flies. 1. Males bearing a heterozygous translocation.—Environ. Entomol. 2, 128134.Google Scholar
Wagoner, D. E., Morgan, P. B., Labrecque, G. C. & Johnson, O. A. (1976). Genetic manipulation used against a field population of house flies: males and females bearing a heterozygous translocation; releases begun prior to reaching initial peak population level.—Environ. Entomol. 5, 7880.CrossRefGoogle Scholar
Wijnands-Stär, K. J. A. & Van Heemert, C. (1974). Radiation induced semi-sterility for genetic control purposes in the onion fly, Hylemya antiqua (Meigen). I. Isolation of semi-sterile stocks and their cytogenetical properties.—Their. Appl. Genet. 44, 111119.CrossRefGoogle Scholar
Zurlini, G. & Robinson, A. S. (1978). Genetic control of Hylemya antiqua. III. Differences in pupation ability between two strains.—Researches Popul. Ecol. 20, 114.CrossRefGoogle Scholar