Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-22T17:52:11.693Z Has data issue: false hasContentIssue false

Functional diversity of staphylinid beetles (Coleoptera: Staphylinidae) in maize fields: testing the possible effect of genetically modified, insect resistant maize

Published online by Cambridge University Press:  19 January 2016

Z. Svobodová*
Affiliation:
Institute of Entomology, Biology Centre CAS, Branišovská 31, 370 05, České Budějovice, Czech Republic Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31, 370 05 České Budějovice, Czech Republic
O. Skoková Habuštová
Affiliation:
Institute of Entomology, Biology Centre CAS, Branišovská 31, 370 05, České Budějovice, Czech Republic
J. Boháč
Affiliation:
Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 13, 370 05 České Budějovice, Czech Republic
F. Sehnal
Affiliation:
Institute of Entomology, Biology Centre CAS, Branišovská 31, 370 05, České Budějovice, Czech Republic Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31, 370 05 České Budějovice, Czech Republic
*
*Author for correspondence Phone: 00420387775252 Fax: 00420385310354 E-mail: [email protected]

Abstract

Staphylinid beetles are recommended bioindicators for the pre-market environmental risk assessment of genetically modified (GM) insect protected maize expressing the Cry3Bb1 toxin. Our multiannual study is a unique European analysis of a staphylinid community within a 14 ha maize field. GM maize, its near-isogenic hybrid (with or without insecticide treatment), and two other reference hybrids were each grown in five 0.5 ha plots. The opportunity for exposure to Cry toxin from plant residues ploughed into the soil was shown by the presence of saprophagous dipteran larvae that are common prey of predatory staphylinid species and hosts of the parasitoid species. 2587 individuals belonging to 77 staphylinid species were sampled using pitfall traps. Lesteva longoelytrata (31%), Oxypoda acuminata (12%), Aloconota sulcifrons (8%) and Anotylus rugosus (7%) were the most abundant beetles in the field. Bionomics, food specialization, temperature requirements and size group were assigned for 25 most common species. These traits determine the occurrence of staphylinid beetles in the field, the food sources they could utilize and thus also their likely contact with the Cry3Bb1 toxin. Statistical analysis of activity abundance, Rao indices and multivariate analysis of distribution of particular categories of functional traits in the field showed negligible effects of the experimental treatments, including the GM maize, upon the staphylinid community. Staphylinid beetles represent a considerably diverse part of epigeic field fauna with wide food specialization; these features render them suitable for the assessment of environmental safety of GM insect protected maize. However, the availability of prey and the presence of particular staphylinid species and their abundance are highly variable; this complicates the interpretation of the results.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albajes, R., Lumbierres, B., Pons, X. & Comas, J. (2013) Representative taxa in field trials for environmental risk assessment of genetically modified maize. Bulletin of Entomological Research 103, 724733.CrossRefGoogle ScholarPubMed
Al-Deeb, M.A. & Wilde, G.E. (2003) Effect of Bt corn expressing the Cry3Bb1 toxin for corn rootworm control on aboveground nontarget arthropods. Environmental Entomology 32, 11641170.Google Scholar
Álvarez-Alfageme, F., Bigler, F. & Romeis, J. (2011) Laboratory toxicity studies demonstrate no adverse effects of Cry1Ab and Cry3Bb1 to larvae of Adalia bipunctata (Coleoptera: Coccinellidae): the importance of study design. Transgenic Research 20, 467479.CrossRefGoogle ScholarPubMed
Assing, V. & Schülke, M. (2011) Die Käfer Mitteleuropas. Band 4. Staphylinidae I, Second Revised Edition, I-XII. Heidelberg, Germany, Spektrum Akademischer Verlag.Google Scholar
Ahmad, A., Wilde, G.E. & Zhu, K.Y. (2005) Detectability of coleopteran-specific Cry3Bb1 protein in soil and its effect on nontarget surface and below-ground arthropods. Environmental Entomology 34, 385394.Google Scholar
Balog, A., Marko, V. & Imre, A. (2009) Farming system and habitat structure effects on rove beetles (Coleoptera: Staphylinidae) assembly in Central European apple and pear orchards. Biologia (Bratislava) 64, 343349.Google Scholar
Balog, A., Kiss, J., Szekeres, D., Szénási, A. & Markó, V. (2010) Rove beetle (Coleoptera: Staphylinidae) communities in transgenic Bt (MON810) and near isogenic maize. Crop Protection 29, 567571.Google Scholar
Balog, A., Szénási, Á., Szekeres, D. & Pálinkás, Z. (2011) Analysis of soil dwelling rove beetles (Coleoptera: Staphylinidae) in cultivated maize fields containing the Bt toxins, Cry34/35Ab1 and Cry1F×Cry34/35Ab1. Biocontrol Science and Technology 21, 293297.CrossRefGoogle Scholar
de Bello, F. & Lepš, J. (2006, last modified: 2008) Instructions for calculating indices of Functional Diversity with the file “FunctDiv.xls”. Available online at http://botanika.bf.jcu.cz/suspa/FunctDiv.php (accessed 14 March 2015).Google Scholar
Benick, G. (1974) Staphylinidae II (Hypocyphtinae und Aleocharinae). pp. 5304 in Freude, H., Harde, K. & Lohse, G.A. (Eds) Die Käfer Mitteleuropas. Band 5. Krefeld, Germany, Goecke & Evers.Google Scholar
Bhatti, M.A., Duan, J., Head, G., Jiang, C.J., McKee, M.J., Nickson, T.E., Pilcher, C.L. & Pilcher, C.D. (2005) Field evaluation of the impact of corn rootworm (Coleoptera: Chrysomelidae)-protected Bt corn on ground-dwelling invertebrates. Environmental Entomology 34, 13251335.Google Scholar
Boháč, J. (1991) The effect of dispersed belts in agroecosystems on communities of epigeic beetles. pp. 289294 in Mahn, E.G. & Tietze, F. (Eds) Agro-Okosysteme und Habitatinseln in der Agrarlandschaft. Halle, Germany, Universitat Halle-Wittenberg.Google Scholar
Boháč, J. (1999) Staphylinid beetles as bioindicators. Agriculture, Ecosystems and Environment 74, 357372.Google Scholar
Boháč, J. & Pospíšil, J. (1984) Carabids and staphylinids of wheat and maize fields and their relationships with surrounding biotopes. Soviet Review of Ecology 3, 2234.Google Scholar
Boháč, J. & Růžička, V. (1990) Size groups of staphylinid beetles (Coleoptera, Staphylinidae). Acta Entomologica Bohemoslovaca 87, 342348.Google Scholar
Botta-Dukát, Z. (2005) Rao's quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science 16, 533540.Google Scholar
Brauns, A. (1954) Terricole Dipterenlarven. Eine Einführung in die Kenntnis und Ökologie der häufigsten bodenlebenden Zweiflüglerlarven der Waldbiozönose auf systematischer Grundlage. Göttingen, Germany, Wissenchaftlicher Verlag.Google Scholar
Brookes, G. & Barfoot, P. (2012) The income and production effects of biotech crops globally 1996–2010. GM Crops and Food: Biotechnology in Agriculture and the Food Chain 3, 265272.Google Scholar
Brown, R.B. (1990) Soil Texture. Gainesville, FL, USA, University of Florida.Google Scholar
Ciobanu, C., Sandor, M., Ciobanu, G., Domuta, C., Samuel, A.D., Vuscan, A. & Chereji, I. (2009) Research regarding Diabrotica virgifera virgifera Le Conte (the western root worm) control in sustainable agricultural. Romanian Agricultural Research 26, 7984.Google Scholar
Dennis, P. & Fry, G.L.A. (1992) Field margins: can they enhance natural enemy population densities and general arthropod diversity on farmland? Agriculture, Ecosystems and Environment 40, 2531.Google Scholar
Devos, Y., De Schrijver, A., De Clercq, P., Kiss, J. & Romeis, J. (2012) Bt-maize event MON 88017 expressing Cry3Bb1 does not cause harm to non-target organisms. Transgenic Research 21, 11911214.CrossRefGoogle Scholar
Duan, J.J., Paradise, M.S., Lundgren, J.G., Bookout, J.T., Jiang, C.J. & Wiedenmann, R.N. (2006) Assessing nontarget impacts of Bt corn resistant to corn rootworms: Tier-1 testing with larvae of Poecilus chalcites (Coleoptera: Carabidae). Environmental Entomology 35, 135142.CrossRefGoogle Scholar
FAO (1978–81) Report on the Agro-Ecological Zones Project. Methodology and Results for Africa, Vol. 1. World Soil Resources Report 48/1. Rome, Italy, FAO.Google Scholar
Farinós, G.P., de la Poza, M., Hernández-Crespo, P., Ortego, F. & Castañera, P. (2008) Diversity and seasonal phenology of aboveground arthropods in conventional and transgenic maize crops in Central Spain. Biological Control 44, 362371.Google Scholar
Fiorito, T.M., Icoz, I. & Stotzky, G. (2008) Adsorption and binding of the transgenic plant proteins, human serum albumin, beta-glucuronidase, and Cry3Bb1, on montmorillonite and kaolinite: Microbial utilization and enzymatic activity of free and clay-bound proteins. Applied Clay Science 39, 142150.Google Scholar
Frank, T. & Reichhart, B. (2004) Staphylinidae and Carabidae overwintering in wheat and sown wildflower areas of different age. Bulletin of Entomological Research 94, 209217.Google Scholar
Fontes, E.M.G., Pires, C.S.S., Sujii, E.R. & Panizzi, A.R. (2002) The environmental effects of genetically modified crops resistant to insects. Neotropical Entomology 31, 497513.Google Scholar
García, M., Ortego, F., Castañera, P. & Farinós, G.P. (2010) Effects of exposure to the toxin Cry1Ab through Bt maize fed-prey on the performance and digestive physiology of the predatory rove beetle Atheta coriaria . Biological Control 55, 225233.Google Scholar
García, M., Ortego, F., Castañera, P. & Farinós, G.P. (2012) Assessment of prey-mediated effects of the coleopteran-specific toxin Cry3Bb1 on the generalist predator Atheta coriaria (Coleoptera: Staphylinidae. Bulletin of Entomological Research 102, 293302.Google Scholar
Gassmann, A.J., Petzold-Maxwell, J.L., Keweshan, R.S. & Dunbar, M.W. (2011) Field-evolved resistance to Bt maize by Western corn rootworm. PLoS ONE 6, e22629.CrossRefGoogle ScholarPubMed
Hawes, C., Haughton, A.J., Osborne, J.L., Roy, D.B., Clark, S.J., Perry, J.N., Rothery, P., Bohan, D.A., Brooks, D.R., Champoin, G.T., Dewar, A.M., Heard, M.S., Woiwod, I.P., Daniels, R.E., Young, M.W., Parish, A.M., Scott, R.J., Firbank, L.G. & Squire, G.R. (2003) Responses of plants and invertebrate trophic groups to contrasting herbicide regimes in the farm scale evaluations of genetically modified herbicide-tolerant crops. Philosophical Transactions of the Royal Society B: Biological Sciences 358, 18991913.Google Scholar
Higgins, L.S., Babcock, J., Neese, P., Layton, R.J., Moellenbeck, D.J. & Storer, N. (2009) Three-year field monitoring of Cry1F, event DAS-Ø15Ø7-1, maize hybrids for nontarget arthropod effects. Environmental Entomology 38, 281292.Google Scholar
Hutchison, W.D., Burkness, E.C., Mitchell, P.D., Moon, R.D., Leslie, T.W., Fleischer, S.J., Abrahamson, M., Hamilton, K.L., Steffey, K.L., Gray, M.E., Hellmich, R.L., Kaster, L.V., Hunt, T.E., Wright, R.J., Pecinovsky, K., Rabaey, T.L., Flood, B.R. & Raun, E.S. (2010) Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330, 222225.Google Scholar
Icoz, I. & Stotzky, G. (2008) Cry3Bb1 protein from Bacillus thuringiensis in root exudates and biomass of transgenic corn does not persist in soil. Transgenic Research 17, 609620.Google Scholar
James, C. (2014) Global Status of Commercialized Biotech/GM Crops: 2014. ISAAA Brief No. 49: Executive Summary. Ithaca, ISAAA.Google Scholar
Jensen, P.D., Dively, G.P., Swan, C.M. & Lamp, W.O. (2010) Exposure and nontarget effects of transgenic Bt corn debris in streams. Environmental Entomology 39, 707714.Google Scholar
Kempson, D., Lloyd, M. & Ghelardi, R. (1963) A new extractor for woodland litter. Pedobiologia 3, 121.Google Scholar
Knecht, S. & Nentwig, W. (2010) Effect of Bt maize on the reproduction and development of saprophagous Diptera over multiple generations. Basic and Applied Ecology 11, 346353.Google Scholar
Lancashire, P.D., Bleiholder, H., van den Boom, T., Langelüddecke, P., Stauss, R., Weber, E. & Witzen-Berger, A. (1991) An uniform decimal code for growth stages of crops and weeds. Annals of Applied Biology 119, 561601.CrossRefGoogle Scholar
Lepš, J. & Šmilauer, P. (2003) Multivariate Analysis of Ecological Data Using CANOCO. Cambridge, Cambridge University Press.Google Scholar
Lepš, J., de Bello, F., Lavorel, S. & Berman, S. (2006) Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia 78, 481501.Google Scholar
Leslie, T.W., Hoheisel, G.A., Biddinger, D.J., Rohr, J.R. & Fleischer, S.J. (2007) Transgenes sustain epigeal insect biodiversity in diversified vegetable farm systems. Environmental Entomology 36, 234244.Google Scholar
Lemaux, P.G. (2008) Genetically engineered plants and foods: a scientist's analysis of the issues (part I). Annual Review of Plant Biology 59, 771812.Google Scholar
Li, Y. & Romeis, J. (2010) Bt maize expressing Cry3Bb1 does not harm the spider mite, Tetranychus urticae, or its ladybird beetle predator, Stethorus punctillum . Biological Control 53, 337344.Google Scholar
Meissle, M. & Romeis, J. (2009) The web-building spider Theridion impressum (Araneae: Theridiidae) is not adversely affected by Bt maize resistant to corn rootworms. Plant Biotechnology Journal 7, 645656.Google Scholar
Meissle, M., Romeis, J. & Bigler, F. (2011) Bt maize and integrated pest management – European perspective. Pest Management Science 67, 10491058.Google Scholar
Naranjo, S.E. (2009) Impacts of Bt crops on non-target organisms and insecticide use patterns. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 4, 011.Google Scholar
Perumalsamy, K., Selvasundaram, R., Roobakkumar, A., Rahman, V.J., Babu, A. & Muraleedharan, N.N. (2009) Life table and predation of Oligota pygmaea (Coleoptera: Staphylinidae) a major predator of the red spider mite, Oligonychus coffeae (Acarina: Tetranychidae) infesting tea. Biological Control 51, 96101.Google Scholar
Rauschen, S., Schultheis, E., Pagel-Wieder, S., Schuphan, I. & Eber, S. (2009) Impact of Bt-corn MON88017 in comparison to three conventional lines on Trigonotylus caelestialium (Kirkaldy) (Heteroptera: Miridae) field densities. Transgenic Research 18, 203214.CrossRefGoogle ScholarPubMed
Rauschen, S., Schaarschmidt, F. & Gathmann, A. (2010) Occurrence and field densities of Coleoptera in the maize herb layer: implications for environmental risk assessment of genetically modified Bt-maize. Transgenic Research 19, 727744.Google Scholar
Rose, R.I. & Dively, G.P. (2007) Effects of insecticide-treated and lepidopteran-active Bt transgenic sweet corn on the abundance and diversity of arthropods. Environmental Entomology 36, 12541268.Google Scholar
Sanvido, O., Romeis, J. & Bigler, F. (2009) An approach for post-market monitoring of potential environmental effects of Bt-maize expressing Cry1Ab on natural enemies. Journal of Applied Entomology 133, 236248.Google Scholar
Schirmel, J., Lenze, S., Katzmann, D. & Buchholz, S. (2010) Capture efficiency of pitfall traps is highly affected by sampling interval. Entomologia Experimentalis et Applicata 136, 206210.Google Scholar
Skoková Habuštová, O., Svobodová, Z., Spitzer, L., Doležal, P., Hussein, H.M. & Sehnal, F. (2015) Communities of ground-dwelling arthropods in conventional and transgenic maize: background data for the post-market environmental monitoring. Journal of Applied Entomology 139, 3145.Google Scholar
Svobodová, Z., Habuštová, O., Hussein, H.M., Půža, V. & Sehnal, F. (2012) Impact of genetically modified maize expressing Cry3Bb1 on non-target arthropods: first year results of a field study. IOBC/wprs Bulletin 73, 107120.Google Scholar
Svobodová, Z., Habuštová, O., Sehnal, F., Holec, M. & Hussein, H.M. (2013) Epigeic spiders are not affected by the genetically modified maize MON 88017. Journal of Applied Entomology 137, 5667.Google Scholar
Toepfer, S., Hatala-Zseller, I., Ehlers, R.-U., Peters, A. & Kuhlmann, U. (2010) The effect of application techniques on field-scale efficacy: can the use of entomopathogenic nematodes reduce damage by western corn rootworm larvae? Agriculture and Forest Entomology 12, 389402.CrossRefGoogle Scholar
Toschki, A., Hothorn, L.A. & Ross-Nickoll, M. (2007) Effects of cultivation of genetically modified Bt maize on epigeic arthropods (Araneae; Carabidae). Environmental Entomology 36, 967981.Google Scholar
Vaughn, T., Cabato, T., Brar, G., Coombe, T., DeGoyer, T., Ford, S., Groth, M., Howe, A., Johnsons, S., Kolacz, K., Pilcher, C., Purcell, J., Romano, C., English, L. & Pershing, J. (2005) A method of controlling corn rootworm feeding using a Bacillus thuringiensis protein expressed in transgenic maize. Crop Science 45, 931938.Google Scholar
Supplementary material: File

Svobodová supplementary material

Tables S1-S2

Download Svobodová supplementary material(File)
File 121.3 KB