Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-31T23:01:21.869Z Has data issue: false hasContentIssue false

Feeding preferences and functional responses of Calathus granatensis and Pterostichus globosus (Coleoptera: Carabidae) on pupae of Bactrocera oleae (Diptera: Tephritidae)

Published online by Cambridge University Press:  11 April 2016

A.M. Dinis
Affiliation:
Mountain Research Center, CIMO, School of Agriculture, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
J.A. Pereira
Affiliation:
Mountain Research Center, CIMO, School of Agriculture, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
J. Benhadi-Marín
Affiliation:
Mountain Research Center, CIMO, School of Agriculture, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
S.A.P. Santos*
Affiliation:
Mountain Research Center, CIMO, School of Agriculture, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
*
*Author for correspondence Telephone: +351273303277 Fax: +351273325405 E-mail: [email protected]

Abstract

Carabid beetles are important predators in agricultural landscapes feeding on a range of prey items. However, their role as predators of the olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), one of the most serious pests of olives, is unknown. In this context, the feeding preferences and the functional responses of two carabid beetle species, Calathus granatensis (Vuillefroy) and Pterostichus globosus (Fabricius), were studied under laboratory conditions. Feeding preference assays involved exposing carabid beetles to different ratios of B. oleae pupae and an alternative prey, the Mediterranean fruit fly, Ceratitis capitata (Wiedemann). Both species fed on B. oleae pupae however, C. granatensis always showed a significant preference for that prey whereas P. globosus switched to C. capitata pupae when the offered ratio was below 0.5. The total prey biomass consumed was significantly higher for P. globosus than for C. granatensis. Functional response curves were estimated based on different densities of B. oleae pupae and both carabid beetle species exhibited a type II functional response using Rogers’ random-predator equation. P. globosus showed shorter handling time (1.223 ± 0.118 h) on B. oleae pupae than C. granatensis (3.230 ± 0.627 h). Our results suggest that both species can be important in reducing the densities of B. oleae in olive groves, although P. globosus was more efficient than C. granatensis.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguiar, C.A. & Serrano, A.R.M. (2012) Coleópteros Carabídeos (Coleoptera, Carabidae) de Portugal Continental: Chaves para sua identificação. Lisbon, Sociedade Portuguesa de Entomologia.Google Scholar
Ayre, K. (2001) Effect of predator size and temperature on the predation of Deroceras reticulatum (Muller) (Mollusca) by carabid beetles. Journal of Applied Entomology 125, 389395.CrossRefGoogle Scholar
Barney, R.J. & Pass, B.C. (1986) Foraging behavior and feeding preference of ground beetles (Coleoptera: Carabidae) in Kentucky alfalfa. Journal of Economic Entomology 79, 13341337.Google Scholar
Begon, M., Townsend, C.R. & Hayer, J.L. (2006) Ecology: From Individuals to Ecosystems. 4th edn. Oxford, Wiley–Blackwell.Google Scholar
Bolke, B. (2007) Ecological Models and Data in R. Princeton. New Jersey, Princeton University Press.Google Scholar
Cárdenas, A.M. & Bach, C. (1985) Fenología de las especies de carábidos (Col. Carabidae) más abundantes en la cuenca del Bembezar (NW. de la provincia de Córdoba). Mediterránea-Serie de Estudios Biológicos 8, 147163.Google Scholar
Cárdenas, A.M. & Bach, C. (1988) Contribución al conocimiento de los carábidos (Col. Carabidae) de Sierra Morena Central. 1a Parte. Boletín Asociación Española de Entomología 12, 925.Google Scholar
Cárdenas, A.M. & Bach, C. (1993) Descripción de los estadios larvarios Calathus granatensis Vuillefroy, 1866 (Col., Carabidae). Boletín Asociación Española de Entomología 17, 109121.Google Scholar
Civantos, M. (1999) Olive Pest and Disease Management. Madrid, Conseil Oleicole International.Google Scholar
Cock, M.J.W. (1978) The assessment of preference. Journal of Animal Ecology 47, 805816.Google Scholar
Daane, K.M. & Johnson, M.W. (2010) Olive fruit fly: managing an ancient pest in modern times. Annual Review of Entomology 55, 151169.CrossRefGoogle ScholarPubMed
DeBach, P. & Rosen, D. (1991) Biological Control by Natural Enemies. 2nd edn. New York, Cambridge University Press.Google Scholar
Dinis, A.M., Pereira, J.A., Pimenta, M.C., Oliveira, J., Benhadi-Marín, J. & Santos, S.A.P. (in press). Suppression of Bactrocera oleae (Diptera: Tephritidae) pupae by soil arthropods in the olive grove. Journal of Applied Entomology. doi: 10.1111/jen.12291.Google Scholar
Ernsting, G. & Vanderwerf, D.C. (1988) Hunger, partial consumption of prey and prey size preference in a carabid beetle. Ecological Entomology 13, 155164.Google Scholar
Foltan, P. (2004) Influence of slug defense mechanisms on the prey preferences of the carabid predator Pterostichus melanarius (Coleoptera: Carabidae). European Journal of Entomology 101, 359364.CrossRefGoogle Scholar
Gonçalves, M.F. & Pereira, J.A. (2012) Abundance and diversity of soil arthropods in the olive grove ecosystem. Journal of Insect Science 12, 20. Available online at insectscience.org/12.20Google Scholar
González-Núñez, M. (1998) Uso conjunto de plaguicidas y enemigos naturales en el olivar: Optimización del manejo de Opius concolor Szépligeti, parasitoide de la mosca del olivo, B. oleae (Gmelin). PhD Dissertation, Department of Crop Protection, Technical University of Madrid. Madrid, Spain.Google Scholar
Hassell, M.P., Lawton, J.H. & Beddington, J.R. (1977) Sigmoid functional response by invertebrate predators and parasitoids. Journal of Animal Ecology 46, 249262.Google Scholar
Hatteland, B.A., Haukeland, S., Roth, S., Brurberg, M.B., Vaughan, I.P. & Symondson, W.O.C. (2013) Spatiotemporal analysis of predation by carabid beetles (Carabidae) on nematode infected and uninfected slugs in the field. PLoS ONE 8 (12). 14 pp. eB2142. Doi: 10.1371/jounal.pone.0082142.CrossRefGoogle ScholarPubMed
Hengeveld, R. (1980) Polyphagy, oligophagy and food specialization in ground beetles (Colepotera; Carabidae). Netherlands Journal of Zoology 30, 585594.Google Scholar
Holling, C.S. (1966) The functional response of invertebrate predators to prey density. Memoirs of the Entomological Society of Canada 98, 586.Google Scholar
Honek, A., Martinkova, Z. & Jarosik, V. (2003) Ground beetles (Carabidae) as seed predators. European Journal of Entomology 100 (4), 531544.Google Scholar
Juliano, S.A. (2001) Nonlinear curve fitting: predation and functional response curve. pp. 178196 in Scheiner, S.M. & Gurevitch, J. (Eds) Design and Analysis of Ecological Experiments. New York, Oxford University Press.CrossRefGoogle Scholar
Kromp, B. (1999) Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agriculture, Ecosystems & Environment 74, 187228.CrossRefGoogle Scholar
Lester, P.J. & Harmsen, R. (2002) Functional and numerical responses do not always indicate the most effective predator for biological control: an analysis of two predators in a two-prey system. Journal of Applied Ecology 39, 455468.CrossRefGoogle Scholar
Lockwood, J.R. III (1998) On the statistical analysis of multiple-choice feeding preference experiments. Oecologia 116, 475481.Google Scholar
Lövei, G.L. (2008) Ecology and conservation biology of ground beetles (Coleoptera: Carabidae) in an age of increasing human dominance. PhD Dissertation, Aarhus University, Aarhus, Denmark.Google Scholar
Lövei, G. & Sunderland, K.D. (1996) Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annual Review of Entomology 41, 231256.CrossRefGoogle ScholarPubMed
Manly, B.F.J., Miller, P. & Cook, L.M. (1972) Analysis of a selective predation experiment. The American Naturalist 106, 719736.CrossRefGoogle Scholar
Mckemey, A.R., Symondson, W.O.C., Glen, D.M. & Brain, P. (2001) Effects of slug size on predation by Pterostichus melanarius (Coleoptera: Carabidae). Biocontrol Science and Technology 11, 8191.CrossRefGoogle Scholar
Murdoch, W.W. (1969) Switching in general predators: experiments on predator specificity and stability of prey populations. Ecological Monographs 39, 335354.CrossRefGoogle Scholar
Murdoch, W.W. & Oaten, A. (1975) Predation and population stability. Advances in Ecological Research 9, 1131.CrossRefGoogle Scholar
Nardi, F., Carapelli, A., Dallai, R., Roderick, G.K. & Frati, F. (2005) Population structure and colonization history of the olive fruit fly, Bactrocera oleae (Diptera, Tephritidae). Molecular Ecology 14, 27292738.Google Scholar
Neuenschwander, P., Bigler, F., Delucchi, V. & Michelakis, S. (1983) Natural enemies of preimaginal stages of Dacus oleae Gmel. (Dipt., Tephritidae) in Western Crete. I. Bionomics and phonologies. Bollettino del Laboratorio di Entomologia Agraria. Filippo Silvestri 40, 332.Google Scholar
Oberholzer, F., Escher, N. & Frank, T. (2003) The potential of carabid beetles (Coleoptera) to reduce slug damage in oilseed rape in the laboratory. European Journal of Entomology 100, 8185.CrossRefGoogle Scholar
Odoguardi, R., Bonnacci, T., Bruno, L., BrandMayr, P. & Zetto, T. (2008) Carabid beetles as potential natural predators of olive fly pupae. Young Ideias in Insect Science . 1st meeting of PhD students and Post-Doctoral Fellows. Florence, Italy.Google Scholar
Oliveira, J.M.S. (2013) Abundância e diversidade de carabídeos ao longo de um gradiente crescente de práticas agrícolas no olival transmontano. MSc Dissertation, School of Agriculture, Polytechnic Institute of Bragança, Bragança, Portugal.Google Scholar
Orsini, M.M., Daane, K.M., Sime, K.R. & Nelson, E.H. (2007) Mortality of olive fruit fly pupae in California. Biocontrol Science and Technology 17, 797807.Google Scholar
Ortuño, V.M. (1990) Estudio sistemático del género Steropus (sensu Jeannel, 1942) de la fauna Ibero-mauritánica (2a parte). El género Corax (Coleoptera, Caraboidea, Pterostichidae). Nova Acta Científica Compostelana, Sección Bioloxía 1, 3146.Google Scholar
Pereira, J.A., Alves, R., Casal, S. & Oliveira, M.B.P.P. (2004) Effect of olive fruit fly infestation on the quality of olive oil from cultivars Cobrançosa, Madural and Verdeal Transmontana. Italian Journal of Food Science 16, 355365.Google Scholar
Rogers, D. (1972) Random search and insect population models. Journal of Animal Ecology 41, 369383.Google Scholar
R Core Team (2015) R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. Available online at http://www.R-project.org Google Scholar
Santos, S.A.P., Cabanas, J.E. & Pereira, J.A. (2007) Abundance and diversity of soil arthropods in olive grove ecosystem (Portugal): effect of pitfall trap type. European Journal of Soil Biology 43, 7783.Google Scholar
Sengonca, C., Al-Zyoud, F. & Blaeser, P. (2005) Prey consumption by larval and adult stages of the entomophagous ladybird Serangium parcesetosum Sicard (Col., Coccinellidae) on the cotton whitefly, Bemisia tabaci (Genn.) (Hom., Aleyrodidae), at two different temperatures. Journal of Pest Science 78, 179186.Google Scholar
Settle, W.H., Ariawan, H., Astuti, E.T., Cahyana, W., Hakim, A.L., Hindayana, D. & Lestari, A.S. (1996) Managing tropical rice pests through conservation of generalist natural enemies and alternative prey. Ecology 77, 19751988.CrossRefGoogle Scholar
Solomon, M.E. (1949) The natural control of animal populations. Journal of Animal Ecology 18, 135.Google Scholar
Suenaga, H. & Hamamura, T. (1998) Laboratory evaluation of carabid beetles (Coleoptera: Carabidae) as predators of diamondback moth (Lepidoptera: Plutellidae) larvae. Environmental Entomology 27, 767772.Google Scholar
Sueldo, M.R., Bruzzone, O.A. & Virla, E.G. (2010) Characterization of the earwig, Doru lineare, as a predator of larvae of the fall armyworm, Spodoptera frugiperda: a functional response study. Journal of Insect Science 10, 38. Available online at insectsicence.org/10.38 Google Scholar
Symondson, W.O.C., Erickson, M.L. & Liddell, J.E. (1999) Development of a monoclonal antibody for the detection and quantification of predation on slugs within the Arion hortensis egg (Mollusca: Pulmonata). Biological Control 16, 274282.Google Scholar
Symondson, W.O.C., Glen, D.M., Ives, A.R., Langdon, C.J. & Wiltshire, C.W. (2002) Dynamics of the relationship between a generalist predator and slugs over five years. Ecology 83, 137147.Google Scholar
Thiele, H.U. (1977) Carabid Beetles in Their Environments. A Study on Habitat Selection by Adaptation in Physiology and Behavior. Berlin, Springer.Google Scholar
Trexler, J.C., McCulloch, C.E. & Travis, J. (1988) How can the functional response best be determined? Oecologia 76, 206214.Google Scholar
Van Leeuwen, E., Jansen, V.A.A. & Bright, P.W. (2007) How population dynamics shape the functional response in a one-predator-two-prey system. Ecology 88, 15711581.Google Scholar
Wallace, S.K. (2004) Molecular gut analysis of carabids (Coleoptera: Carabidae) using aphid primers. MSc Dissertation, Montana State University, Bozeman, Montana, USA.Google Scholar
Wallinger, C., Sint, D., Baier, F., Schmid, C., Mayer, R., Traugott, M. (2015) Detection of seed DNA in regurgitates of granivorous carabid beetles. Bulletin of Entomological Research 105, 728735.Google Scholar
Wheater, C.P. (1988) Predator-prey size relationships in some Pterostichini (Coleoptera, Carabidae). Coleoptera Bulletin 42, 237240.Google Scholar
Zbyšek, Š. (2012) Changes in carabid communities (Insecta: Coleoptera) along an urbanization gradient in Madrid (Spain). Studii şi comunicări. Ştiinţele Naturii. Muzeul Olteniei Craiova. Oltenia. 28, 20 pp.Google Scholar