Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T04:43:41.781Z Has data issue: false hasContentIssue false

Evolutionary diversification of bruchine beetles: climate-dependent traits and development associated with pest status

Published online by Cambridge University Press:  18 January 2011

M. Tuda*
Affiliation:
Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
*
*Fax: +81-92-642-3040 E-mail: [email protected]

Abstract

A number of insect species infest human households and stored foods and products, leading to their designation as pests. Until recently, little was known about the factors driving the evolution of pests that feed on stored dry foods. Here, I review the effects of changes in climate and species interactions on the evolution and ecology of beetles that feed on dried seeds/grains. My review focuses on evidence that the host utilization by part of the species in the subfamily Bruchinae (Chrysomelidae) is a preadaptation for utilizing stored dry seeds and grains, thus leading to their status as a pest. These and other stored product pest beetles retain a higher percentage of water in their body, relative to the water content of their diet, than beetles that feed on fresh crops. I review the studies that have documented adaptation, acclimation and polyphenetic response to high temperatures and desiccation and/or made direct comparisons between these traits between developmental stages, populations and among higher taxonomic groups. Finally, I review evidence for the effects of environmental change on insect host-parasitoid and competitor assemblages.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfieri, A. (1931) Les insects de la tombe de Toutankhamon. Bulletin de la Société Royale Entomologique d’Égypte 3–4, 188189.Google Scholar
Alvarez, N., McKey, D., Hossaert-McKey, M., Born, C., Mercier, L. & Benrey, B. (2005) Ancient and recent evolutionary history of the bruchid beetle, Acanthoscelides obtectus Say, a cosmopolitan pest of beans. Molecular Ecology 14, 10151024.CrossRefGoogle Scholar
Amevoin, K., Glitho, I.A., Monge, J.P. & Huignard, J. (2005) Why Callosobruchus rhodesianus causes limited damage during storage of cowpea seeds in a tropical humid zone in Togo. Entomologia Experimentalis et Applicata 116, 175182.CrossRefGoogle Scholar
Appleby, J.H. & Credland, P.F. (2007) The role of temperature and larval crowding in morph determination in a tropical beetle, Callosobruchus subinnotatus. Journal of Insect Physiology 53, 983993.CrossRefGoogle Scholar
Arnqvist, G. & Tuda, M. (2010) Sexual conflict and the gender load: correlated evolution between population fitness and sexual dimorphism in seed beetles. Proceedings of the Royal Society, Series B 277, 13451352.Google ScholarPubMed
Arnqvist, G., Dowling, D.K., Eady, P., Gay, L., Tregenza, T., Tuda, M. & Hosken, D.J. (2010) The genetic architecture of metabolic rate: environment specific epistasis between mitochondrial and nuclear genes in an insect. Evolution 64, 33543363.CrossRefGoogle ScholarPubMed
Atkinson, D. (1994) Temperature and organism size: a biological law for ectotherms? Advances in Ecological Research 25, 158.CrossRefGoogle Scholar
Bale, J.S. & Hayward, S.A.L. (2010) Insect overwintering in a changing climate. Journal of Experimental Biology 213, 980994.CrossRefGoogle Scholar
Ballard, J.W.O. & Rand, D.M. (2005) The population biology of mitochondrial DNA and its phylogenetic implications. Annual Review of Ecology, Evolution and Systematics 36, 621642.CrossRefGoogle Scholar
Bell, C.H. (1994) A review of diapause in stored-product insects. Journal of Stored Products Research 30, 99120.CrossRefGoogle Scholar
Berg, M.P., Kiers, E.T., Driessen, G., van der Heijden, M., Kooi, B.W., Kuenen, F., Liefting, M., Verhoef, H.A. & Ellers, J. (2010) Adapt or disperse: understanding species persistence in a changing world. Global Change Biology 16, 587598.CrossRefGoogle Scholar
Block, W. (1996) Cold or drought: the lesser of two evils for terrestrial arthropods? European Journal of Entomology 93, 325339.Google Scholar
Bowler, K. & Terblanche, J.S. (2008) Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? Biological Reviews 83, 339355.CrossRefGoogle ScholarPubMed
Braby, M.F. & Jones, R.E. (1994) Effects of temperature and hostplants on survival, development and body size in three tropical satyrine butterflies from north-eastern Australia. Australian Journal of Zoology 42, 195213.CrossRefGoogle Scholar
Caswell, G.H. (1960) Observations on an abnormal form of Callosobruchus maculatus (F.). Bulletin of Entomological Research 50, 671680.CrossRefGoogle Scholar
Chown, S.L. (2001) Physiological variation in insects: hierarchical levels and implications. Journal of Insect Physiology 47, 649660.CrossRefGoogle ScholarPubMed
Cloudsley-Thompson, J.L. (1962) Lethal temperatures of some desert arthropods and the mechanism of heat death. Entomologia Experimentalis et Applicata 5, 270280.CrossRefGoogle Scholar
Cohet, Y. & David, J. (1978) Control of adult reproductive potential by pre-imaginal thermal conditions; a study in Drosophila melanogaster. Oecologia 36, 295306.CrossRefGoogle Scholar
Cotton, R.T. (1956) Insects Pests of Stored Grain and Grain Products. Minneapolis, MN, USA, Burgess.Google Scholar
Dahlhoff, E.P. & Rank, N.E. (2000) Functional and physiological consequences of genetic variation at phosphoglucose isomerase: Heat shock protein expression is related to enzyme genotype in a montane beetle. Proceedings of the National Academy of Sciences USA 97, 1005610061.CrossRefGoogle Scholar
Davis, A.J., Lawton, J.H., Shorrocks, B. & Jenkinson, L.S. (1998) Individualistic species responses invalidate simple physiological models of community dynamics under global environmental change. Journal of Animal Ecology 67, 600612.CrossRefGoogle Scholar
Decelle, J. (1981) Bruchidae related to grain legumes in the Afro-tropical area. pp. 193197 in Labeyrie, V. (Ed.) The Ecology of Bruchids Attacking Legumes (Pulses). The Hague, The Netherlands, Dr W. Junk Publishers.CrossRefGoogle Scholar
Delobel, A., Couturier, G., Kahn, F. & Nilsson, J.A. (1995) Trophic relationships between palms and bruchids (Coleoptera, Bruchidae, Pachymerini) in Peruvian Amazonia. Amazoniana 13, 209219.Google Scholar
Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor, C.K., Haak, D.C. & Martin, P.R. (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences USA 105, 66686672.CrossRefGoogle ScholarPubMed
Doi, A., Suzuki, H. & Matsuura, E.T. (1999) Genetic analysis of temperature-dependent transmission of mitochondrial DNA in Drosophila. Heredity 82, 555560.CrossRefGoogle ScholarPubMed
Doi, H., Takahashi, M. & Katano, I. (2010) Genetic diversity increases regional variation in phenological dates in response to climate change. Global Change Biology 16, 373379.CrossRefGoogle Scholar
Donahaye, E., Navarro, S. & Calderon, M. (1966) Observations on the life cycle of Caryedon gonagra (F.) on its natural host in Israel, Acacia spirocarpa and A. tortilis. Tropical Science 8, 8589.Google Scholar
Dowling, D.K., Abiega, K.C. & Arnqvist, G. (2007) Temperature-specific outcomes of cytoplasmic-nuclear interactions on egg-to-adult development time in seed beetles. Evolution 61, 194201.CrossRefGoogle ScholarPubMed
Edvardsson, M. (2007) Female Callosobruchus maculatus mate when they are thirsty: resource-rich ejaculates as mating effort in a beetle. Animal Behaviour 74, 183188.CrossRefGoogle Scholar
Edvardsson, M. & Tregenza, T. (2005) Why do male Callosobruchus maculatus harm their mates? Behavioral Ecology 16, 788793.CrossRefGoogle Scholar
El-Sawaf, S.K. (1956) Some factors affecting the longevity, oviposition and rate of development in the southern cowpea weevil, Callosobruchus maculatus F. (Coleoptera: Bruchidae). Bulletin de la. Societe Entomologique d'Egypte 40, 2995.Google Scholar
Fields, P.G. (1992) The control of stored-product insects and mites with extreme temperatures. Journal of Stored Products Research 28, 89118.CrossRefGoogle Scholar
Fox, C.W., Stillwell, R.C., Wallin, W.G. & Hitchcock, L.J. (2006) Temperature and host species affect nuptial gift size in a seed-feeding beetle. Functional Ecology 20, 10031011.CrossRefGoogle Scholar
Fujii, K. (1967) Studies on interspecies competition between the azuki bean weevil, Callosobruchus chinensis, and the southern cowpea weevil, C. maculatus. II. Competition under different environmental conditions. Researches on Population Ecology 9, 192200.CrossRefGoogle Scholar
Fujii, K., Gatehouse, A.M.R., Mitchell, R., Johnson, C.D. & Yoshida, Y. (1990) Bruchids and Legumes: Economics, Ecology and Coevolution. Dordrecht, The Netherlands, Kluwer Academic Publishers.CrossRefGoogle Scholar
Gibbs, A.G. (1998) The role of lipid physical properties in lipid barriers. American Zoologist 38, 268279.CrossRefGoogle Scholar
Gilchrist, G.W., Huey, R.B. & Partridge, L. (1997) Thermal sensitivity of Drosophila melanogaster: Evolutionary responses of adults and eggs to laboratory natural selection at different temperatures. Physiological Zoology 70, 403414.CrossRefGoogle ScholarPubMed
Gilg, O., Sittler, B. & Hanski, I. (2009) Climate change and cyclic predator-prey population dynamics in the high Arctic. Global Change Biology 15, 26342652.CrossRefGoogle Scholar
Hance, T., van Baaren, J., Vernon, P. & Boivin, G. (2007) Impact of extreme temperatures on parasitoids in a climate change perspective. Annual Review of Entomology 52, 107126.CrossRefGoogle Scholar
Hochachka, P.W. & Somero, G.N. (1984) Biochemical Adaptation. Princeton, NJ, USA, Princeton University Press.CrossRefGoogle Scholar
Hoffmann, A.A., Sorensen, J.G. & Loeschcke, V. (2003) Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. Journal of Thermal Biology 28, 175216.CrossRefGoogle Scholar
Howe, R.W. & Currie, J.E. (1964) Some laboratory observations on the rates of development, mortality and oviposition of several species of Bruchidae breeding in stored pulses. Bulletin of Entomology Research 55, 437477.CrossRefGoogle Scholar
Hudaib, T., Hayes, W., Brown, S. & Eady, P.E. (2010) Effect of seed moisture content and d-limonene on oviposition decisions of the seed beetle Callosobruchus maculatus. Entomologia Experimentalis et Applicata 137, 120125.CrossRefGoogle Scholar
Huey, R.B., Berrigan, D., Gilchrist, G.W. & Herron, J.C. (1999) Testing the adaptive significance of acclimation: a strong inference approach. American Zoologist 39, 323336.CrossRefGoogle Scholar
Ishihara, M. (1998) Geographical variation in insect developmental period: effect of host plant phenology on the life cycle of the bruchid seed feeder Kytorhinus sharpianus. Entomologia Experimentalis et Applicata 87, 311319.CrossRefGoogle Scholar
Ishii, S. (1952) Studies on the host preference of the cowpea weevil (Callosobruchus chinensis. L.). Bulletin of National Institute of Agricultural Science, Series C 1, 185256 (in Japanese with English summary).Google Scholar
Ishikura, S. (1939) Influence of temperature and humidity at the developmental period upon the oviposition of Bruchus chinensis L. Oyo Dobutsu Zasshi 11, 4152 (in Japanese).Google Scholar
Janzen, D.H. (1971) Seed predation by animals. Annual Review of Ecology and Systematics 2, 465492.CrossRefGoogle Scholar
Jermy, T. & Szentesi, A. (2003) Evolutionary aspects of host plant specialisation – a study on bruchids (Coleoptera: Bruchidae). Oikos 101, 196204.CrossRefGoogle Scholar
Johnson, C.D. (1981) Seed beetle host specificity and the systematics of the Leguminosae. pp. 9951027 in Polhill, R.M. & Raven, P.H. (Eds) Advances in Legume Systematics, Part 2. Kew, UK, Royal Botanical Gardens.Google Scholar
Kiritani, K. (2006) Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan. Population Ecology 48, 512.CrossRefGoogle Scholar
Kiyoku, M. (1960) Experimental studies on the influence of an abnormally high temperature upon some biological characters in insects survived the heat-treatment and those in their offsprings. Scientific Reports of the Faculty of Agriculture Okayama University 16, 2532.Google Scholar
Kiyoku, M. (1962) Studies on the lethal action of abnormally high temperature on insects, XVIII. general consideration and conclusions on the results of the serial studies published hitherto. Scientific Reports of the Faculty of Agriculture Okayama University 19, 1728.Google Scholar
Klapwijk, M.J., Groebler, B.C., Ward, K., Wheeler, D. & Lewis, O.T. (2010) Influence of experimental warming and shading on host-parasitoid synchrony. Global Change Biology 16, 102112.CrossRefGoogle Scholar
Klok, C.J. & Chown, S.L. (2001) Critical thermal limits, temperature tolerance and water balance of a sub-Antarctic kelp fly, Paractora druexi (Diptera: Helcomyzidae). Journal of Insect Physiology 47, 95109.CrossRefGoogle ScholarPubMed
Krebs, R.A. & Loeschcke, V. (1995) Resistance to thermal stress in preadult Drosophila buzzattii: Variation among populations and changes in relative resistance across life stages. Biological Journal of the Linnean Society 56, 517531.CrossRefGoogle Scholar
Kurota, H. (2004) Overwintering strategies depending on high cold hardiness in nondiapause stages in Bruchidius dorsalis (Coleoptera: Bruchidae). Environmental Entomology 33, 11631168.CrossRefGoogle Scholar
Labeyrie, V. (1981) The ecology of bruchids attacking legumes (pulses). The Hague, Dr W Junk Publishers.CrossRefGoogle Scholar
Leather, S.R., Walters, K.F.A. & Bale, J.S. (1993) The Ecology of Insect Overwintering. Cambridge, UK, Cambridge University Press.CrossRefGoogle Scholar
Leroi, A.M., Bennett, A.F. & Lenski, R.E. (1994) Temperature acclimation and competitive fitness: an experimental test of the beneficial acclimation assumption. Proceedings of the National Academy of Sciences USA 91, 19171921.CrossRefGoogle ScholarPubMed
Linsley, E.G. (1944) Natural sources, habitats and reservoirs of insects associated with stored food products. Hilgardia 16, 187224.CrossRefGoogle Scholar
Loeschcke, V. & Hoffmann, A.A. (2002) The detrimental acclimation hypothesis. Trends in Ecology & Evolution 17, 407408.CrossRefGoogle Scholar
Mahroof, R., Subramanyam, B., Throne, J.E. & Menon, A. (2003) Time-mortality relationships for Tribolium castaneum (Coleoptera: Tenebrionidae) life stages exposed to elevated temperatures. Journal of Economic Entomology 96, 13451351.CrossRefGoogle ScholarPubMed
Mahroof, R., Zhu, K.Y., Neven, L., Subramanyam, B. & Bai, J. (2005) Expression patterns of three heat shock protein 70 genes among developmental stages of the red flour beetle Tribolium castaneum (Coleoptera: Tenebrionidae). Comparative Biochemistry and Physiology A 141, 247256.CrossRefGoogle ScholarPubMed
Marlatt, C.L. (1896) The clothes moths. United States Department of Agriculture Division of Entomology Bulletin 4(n.s.), 6369.Google Scholar
Mellanby, K. (1954) Acclimatization and the thermal death point in insects. Nature 173, 582583.CrossRefGoogle ScholarPubMed
Mitchell, R. (1977) Bruchid beetles and seed packaging by Palo Verde. Ecology 58, 644651.CrossRefGoogle Scholar
Moya-Larano, J., El-Sayyid, M.E.T. & Fox, C.W. (2007) Smaller beetles are better scramble competitors at cooler temperatures. Biology Letters 3, 475478.CrossRefGoogle ScholarPubMed
Mullins, D.E. (1985) Chemistry and physiology of the haemolymph. pp. 355400 in Kerkut, G.A. & Gilbert, L.I. (Eds) Comprehensive Insects Physiology. Oxford, UK, Pergamon Press.Google Scholar
Musolin, D.L., Tougou, D. & Fujisaki, K. (2010) Too hot to handle? Phenological and life-history responses to simulated climate change of the southern green stink bug Nezara viridula (Heteroptera: Pentatomidae). Global Change Biology 16, 7387.CrossRefGoogle Scholar
Nagata, Y. & Matsuura, E.T. (1991) Temperature dependency of electron-transport activity in mitochondria with exogenous mitochondrial DNA in Drosophila. Japanese Journal of Genetics 66, 255261.Google ScholarPubMed
Nahdy, M.S., Silim, S.N. & Ellis, R.H. (1999) Effect of field infestations of immature pigeonpea (Cajanus cajan (L.) Millsp.) pods on production of active (flight) and sedentary (flightless) morphs of Callosobruchus chinensis (L.). Journal of Stored Products Research 35, 339354.CrossRefGoogle Scholar
Oosthuizen, M.J. (1935) The effect of high temperature on the confused flour beetle. Minnesota Technological Bulletin 107, 145.Google Scholar
Ouedraogo, P.A., Monge, J.P. & Huignard, J. (1991) Importance of temperature and seed water content on the induction of imaginal polymorphism in Callosobruchus maculatus. Entomologia Experimentalis et Applicata 59, 5966.CrossRefGoogle Scholar
Patel, S., Nelson, D.R. & Gibbs, A.G. (2001) Chemical and physical analyses of wax ester properties. Journal of Insect Science 1(4), 7pp.CrossRefGoogle ScholarPubMed
Phillips, T.W. & Throne, J.E. (2010) Biorational approaches to managing stored-product insects. Annual Review of Entomology 55, 375397.CrossRefGoogle ScholarPubMed
Prevett, P.F. (1966) Observations on biology in the genus Caryedon Schoenherr (Coleoptera: Bruchidae) in Northern Nigeria with a list of associated parasitic Hymenoptera. Proceedings of the Royal Entomological Society of London, Series A 41, 916.CrossRefGoogle Scholar
Rankin, D.J. & Arnqvist, G. (2008) Sexual dimorphism is associated with population fitness in the seed beetle Callosobruchus maculatus. Evolution 62, 622630.CrossRefGoogle ScholarPubMed
Robinson, W.M. (1927) Water binding capacity of colloids a definite factor in winter hardiness of insects. Journal of Economic Entomology 20, 8088.CrossRefGoogle Scholar
Robinson, W.M. (1928) Water conservation in insects. Journal of Economic Entomology 21, 898902.CrossRefGoogle Scholar
Rönn, J.L., Katvala, M. & Arnqvist, G. (2008) Interspecific variation in ejaculate allocation and associated effects on female fitness in seed beetles. Journal of Evolutionary Biology 21, 461470.CrossRefGoogle ScholarPubMed
Sakurai, G. & Kasuya, E. (2008) Different female mating rates in different populations do not reflect the benefits the females gain from polyandry in the adzuki bean beetle. Journal of Ethology 26, 9398.CrossRefGoogle Scholar
Sano, I. (1967) Density effect and environmental temperature as the factors producing the active form of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Journal of Stored Products Research 2, 187195.CrossRefGoogle Scholar
Sano-Fujii, I. (1984) Effect of bean water content on the production of the active form of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Journal of Stored Products Research 20, 153161.CrossRefGoogle Scholar
Sano-Fujii, I. (1986) The genetic basis of the production of the active form of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Journal of Stored Products Research 22, 115123.CrossRefGoogle Scholar
Shimada, M. & Ishihara, M. (1991) Two types of overwintering larvae in a wild multivoltine bruchid, Kytorhinus sharpianus Bridwell (Coleoptera, Bruchidae). Applied Entomology and Zoology 26, 289297.CrossRefGoogle Scholar
Sibly, R.M., Smith, R.H. & Moller, H. (1991) Evolutionary demography of a bruchid beetle. 4. genetic trade-off, stabilizing selection and a model of optimal body size. Functional Ecology 5, 594601.CrossRefGoogle Scholar
Siomos, M.F. (2009) Shaped by the environment – adaptation in plants. FEBS Journal 276, 47054714.CrossRefGoogle ScholarPubMed
Solomon, S., Plattner, G.K., Knutti, R. & Friedlingstein, P. (2009) Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences USA 106, 17041709.CrossRefGoogle ScholarPubMed
Southgate, B.J. (1979) Biology of the Bruchidae. Annual Review of Entomology 24, 449473.CrossRefGoogle Scholar
Southgate, B.J. (1981) Univoltine and multivoltine cycles: their significance. pp. 1722 in Labeyrie, V. (Ed.) The Ecology of Bruchids Attacking Legumes (Pulses). The Hague, The Netherlands, Dr W. Junk Publishers.CrossRefGoogle Scholar
Srygley, R.B., Dudley, R., Oliveira, E.G., Aizprua, R., Pelaez, N.Z. & Riveros, A.J. (2010) El Nino and dry season rainfall influence hostplant phenology and an annual butterfly migration from Neotropical wet to dry forests. Global Change Biology 16, 936945.CrossRefGoogle Scholar
Stillwell, R.C. & Fox, C.W. (2005) Complex patterns of phenotypic plasticity: Interactive effects of temperature during rearing and oviposition. Ecology 86, 924934.CrossRefGoogle Scholar
Stillwell, R.C. & Fox, C.W. (2007) Environmental effects on sexual size dimorphism of a seed-feeding beetle. Oecologia 153, 273280.CrossRefGoogle ScholarPubMed
Stillwell, R.C., Morse, G.E. & Fox, C.W. (2007a) Geographic variation in body size and sexual size dimorphism of a seed-feeding beetle. American Naturalist 170, 358369.CrossRefGoogle ScholarPubMed
Stillwell, R.C., Wallin, W.G. & Fox, C.W. (2007b) Phenotypic plasticity in a complex world: interactive effects of food and temperature on fitness components of a seed beetle. Oecologia 153, 309321.CrossRefGoogle Scholar
Tabachnick, W.J. (2010) Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world. Journal of Experimental Biology 213, 946954.CrossRefGoogle Scholar
Tauber, M.J. & Tauber, C.A. (1986) Seasonal Adaptation of Insects. Oxford, UK, Oxford University Press.Google Scholar
Teran, A.L. (1962) Observaciones sobre Bruchidae del Noroeste Argentino. Acta Zoologica Lilloana 18, 211242.Google Scholar
Tribolium Genome Sequencing Consortium (2008) The genome of the model beetle and pest. Tribolium castaneum. Nature 452, 949955.Google Scholar
Tuda, M. (1993) Density dependence depends on scale; at larval resource patch and at whole population. Researches on Population Ecology 35, 261271.CrossRefGoogle Scholar
Tuda, M. (1998) Evolutionary character changes and population responses in an insect host-parasitoid experimental system. Researches on Population Ecology 40, 293299.CrossRefGoogle Scholar
Tuda, M. (2003) A new species of Callosobruchus (Coleoptera: Bruchidae) feeding on seeds of Dunbaria (Fabaceae), a closely related species to a stored-bean pest, C. chinensis. Applied Entomology and Zoology 38, 197201.CrossRefGoogle Scholar
Tuda, M. (2007) Applied evolutionary ecology of insects of the subfamily Bruchinae (Coleoptera: Chrysomelidae). Applied Entomology and Zoology 42, 337346.CrossRefGoogle Scholar
Tuda, M. & Iwasa, Y. (1998) Evolution of contest competition and its effect on host-parasitoid dynamics. Evolutionary Ecology 12, 855870.CrossRefGoogle Scholar
Tuda, M. & Morimoto, K. (2004) A new species Megabruchidius sophorae (Coleoptera, Bruchidae), feeding on seeds of Styphnolobium (Fabaceae) new to Bruchidae. Zoological Science 21, 105110.CrossRefGoogle ScholarPubMed
Tuda, M. & Shima, K. (2002) Relative importance of weather and density dependence on the dispersal and on-plant activity of the predator Orius minutus. Population Ecology 44, 251257.CrossRefGoogle Scholar
Tuda, M. & Shimada, M. (1993) Population-level analysis on reduction in equilibrium population size of the azuki bean beetle. Researches on Population Ecology 35, 231239.CrossRefGoogle Scholar
Tuda, M. & Shimada, M. (1995) Developmental schedules and persistence of experimental host-parasitoid systems at two different temperatures. Oecologia 103, 283291.CrossRefGoogle ScholarPubMed
Tuda, M. & Shimada, M. (2005) Complexity, evolution and persistence in host-parasitoid experimental systems, with Callosobruchus beetles as the host. Advances in Ecological Research 37, 3775.CrossRefGoogle Scholar
Tuda, M., Chou, L.-Y., Niyomdham, C., Buranapanichpan, S. & Tateishi, Y. (2005) Ecological factors associated with pest status in Callosobruchus (Coleoptera: Bruchidae): high host specificity of non-pests to Cajaninae (Fabaceae). Journal of Stored Products Research 41, 3145.CrossRefGoogle Scholar
Tuda, M., Matsumoto, T., Itioka, T., Ishida, N., Takanashi, M., Ashihara, W., Kohyama, M. & Takagi, M. (2006a) Climatic and inter-trophic effects detected in 10-year population dynamics of biological control of the arrowhead scale by two parasitoids in southwestern Japan. Population Ecology 48, 5970.CrossRefGoogle Scholar
Tuda, M., Ronn, J., Buranapanichpan, S., Wasano, N. & Arnqvist, G. (2006b) Evolutionary diversification of the bean beetle genus Callosobruchus (Coleoptera: Bruchidae): traits associated with stored-product pest status. Molecular Ecology 15, 35413551.CrossRefGoogle ScholarPubMed
Utida, S. (1954) ‘Phase’ dimorphism observed in the laboratory population of the cowpea weevil, Callosobruchus quadrimaculatus. Oyo Dobutsu Zasshi 18, 161168. (in Japanese with English summary).Google Scholar
Utida, S. (1965) ‘Phase’ dimorphism observed in the laboratory population of the cowpea weevil, Callosobruchus maculatus. IV. The mechanism of induction of the flight form. Japanese Journal of Ecology 15, 193199. (in Japanese with English summary).Google Scholar
Utida, S. (1966) Water content of body in several kinds of the bean weevil. Japanese Journal of Applied Entomology and Zoology 10, 3943. (in Japanese with English summary).CrossRefGoogle Scholar
Utida, S. (1969) Photoperiod as a factor inducing the flight form in the population of the southern cowpea weevil, Callosobruchus maculatus. Japanese Journal of Applied Entomology and Zoology 13, 129134. (in Japanese with English summary).CrossRefGoogle Scholar
Vamosi, S.M. (2005) Interactive effects of larval host and competition on adult fitness: an experimental test with seed beetles (Coleoptera: Bruchidae). Functional Ecology 19, 859864.CrossRefGoogle Scholar
Vamosi, S.M. & Lesack, T.L. (2007) Direct effects of larval competition on development time and fecundity in seed beetles. Evolutionary Ecology Research 9, 11311143.Google Scholar
van Asch, M. & Visser, M.E. (2007) Phenology of forest caterpillars and their host trees: The importance of synchrony. Annual Review of Entomology 52, 3755.CrossRefGoogle ScholarPubMed
Watanabe, N. (1985) Oviposition habit of Sulcobruchus sauteri (Pic) and its significance in speculation on the pre-agricultural life of seed beetles attacking stored pulses (Coleoptera: Bruchidae). Kontyu 53, 391397.Google Scholar
Wilson, R.S. & Franklin, C.R. (2002) The detrimental acclimation hypothesis: response. Trends in Ecology & Evolution 17, 408.CrossRefGoogle Scholar
Xie, S.-P., Deser, C., Vecchi, G.A., Ma, J., Teng, H. & Wittenberg, A.T. (2010) Global warming pattern formation: Sea surface temperature and rainfall. Journal of Climate 23, 966986.CrossRefGoogle Scholar
Yanagi, S. & Miyatake, T. (2002) Effects of maternal age on reproductive traits and fitness components of the offspring in the bruchid beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). Physiological Entomology 27, 261266.CrossRefGoogle Scholar
Yanagi, S. & Tuda, M. (2010) Interaction effect among maternal environment, maternal investment and progeny genotype on life history traits in Callosobruchus chinensis. Functional Ecology 24, 383391.CrossRefGoogle Scholar
Yoshida, T. (1990) Historical review of bruchid studies in Japan. pp. 124 in Fujii, K., Gatehouse, A.M.R., Mitchell, R., Johnson, C.D. & Yoshida, Y. (Eds) Bruchids and Legumes: Economics, Ecology and Coevolution. Dordrecht, The Netherlands, Kluwer Academic Publishers.Google Scholar
Yukawa, J. & Akimoto, K. (2006) Influence of synchronization between adult emergence and host plant phenology on the population density of Pseudasphondylia neolitseae (Diptera: Cecidomyiidae) inducing leaf galls on Neolitsea sericea (Lauraceae). Population Ecology 48, 1321.CrossRefGoogle Scholar