Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T03:13:15.030Z Has data issue: false hasContentIssue false

Evaluation of native plant flower characteristics for conservation biological control of Prays oleae

Published online by Cambridge University Press:  19 January 2016

A. Nave*
Affiliation:
Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5001-801, Vila Real, Portugal
F. Gonçalves
Affiliation:
Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5001-801, Vila Real, Portugal
A.L. Crespí
Affiliation:
Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5001-801, Vila Real, Portugal
M. Campos
Affiliation:
Department of Environmental Protection, Estación Experimental de Zaidín, CSIC, Profesor Albareda n° 1, 18008 – Granada, Spain
L. Torres
Affiliation:
Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5001-801, Vila Real, Portugal
*
*Author for correspondence Tel: 00351 259 350 475 Fax: 00351 259 350 629 E-mail: [email protected]

Abstract

Several studies have shown that manipulating flowering weeds within an agroecosystem can have an important role in pest control by natural enemies, by providing them nectar and pollen, which are significant sources of nutrition for adults. The aim of this study was to assess if the olive moth, Prays oleae (Bernard, 1788) (Lepidoptera: Praydidae), and five of its main natural enemies, the parasitoid species Chelonus elaeaphilus Silvestri (Hymenoptera: Braconidae), Apanteles xanthostigma (Haliday) (Hymenoptera: Braconidae), Ageniaspis fuscicollis (Dalman) (Hymenoptera: Encyrtidae) and Elasmus flabellatus (Fonscolombe) (Hymenoptera: Eulophidae), as well as the predator Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae), can theoretically access the nectar from 21 flowering weeds that naturally occur in olive groves. Thus, the architecture of the flowers as well as the mouthpart structure and/or the head and thorax width of the pest and its enemies were analyzed. The results suggested that all beneficial insects were able to reach nectar of the plant species from Apiaceae family, i.e. Conopodium majus (Gouan) Loret, Daucus carota L. and Foeniculum vulgare Mill., as well as Asparagus acutifolius L., Echium plantagineum L., Capsella bursa-pastoris (L.) Medik., Raphanus raphanistrum L., Lonicera hispanica Boiss. et Reut., Silene gallica L., Spergula arvensis L., Hypericum perforatum L., Calamintha baetica Boiss. et Reut, Malva neglecta Wallr. and Linaria saxatilis (L.) Chaz. P. oleae was not able to access nectar from five plant species, namely: Andryala integrifolia L., Chondrilla juncea L., Dittrichia viscosa (L.) Greuter, Sonchus asper (L.) Hill and Lavandula stoechas L.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alpert, P., Bone, E. & Holzapfel, C. (2000) Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspectives in Plant Ecology, Evolution and Systematics 3, 5266.Google Scholar
Alvarado, M., Civantos, M. & Durán, J.M. (2008) Plagas in. pp. 511593 in Barranco, D., Fernández-Escobar, R. & Rallo, L. (Eds) El cultivo del olivo. 6th edn. Madrid, Ediciones Mundi-Prensa.Google Scholar
Ambrosino, M., Luna, J., Jepson, P. & Wratten, S. (2006) Relative frequencies of visits to selected insectary plants by predatory hoverflies (Diptera, Syrphidae), other beneficial insects, and herbivores. Environmental Entomology 35, 394400.CrossRefGoogle Scholar
Baggen, L.R., Gurr, G.M. & Meats, A. (1999) Flowers in tri-trophic systems, mechanisms allowing selective exploitation by insect natural enemies for conservation biological control. Entomologia Experimentalis et Applicata 91, 155161.CrossRefGoogle Scholar
Bento, A. (1999) Contribuição para o estabelecimento de um programa de protecção integrada contra a traça-da-oliveira, Prays oleae (Bern.) em Trás-os-Montes. Tese de Doutoramento em Engenharia Agrícola, UTAD, Vila Real, 277 p.Google Scholar
Bento, A., Lopes, J., Campos, M. & Torres, L. (1998) Parasitismo associado à traça da oliveira Prays oleae Bern. em Trás-os-Montes (Nordeste de Portugal). Boletín Sanidad Vegetal Plagas 24, 949954.Google Scholar
Bento, A.A., Cabanas, J.E., Pereira, J.A., Torres, L., Herz, A. & Hassan, S.A. (2004) Effects of different attractive sources on the abundance of olive predatory arthropods and possible enhancement of their activity as predators on eggs of Prays oleae Bern. 5th International Symposium on Olive Growing. Izmir, 73 pp.Google Scholar
Bento, A., Torres, L., Cabanas, J.E. & Pereira, J.A. (2007) A traça-da-oliveira, Prays oleae (Bernard) in Torres, L. (Coord.). pp. 202229 in Azevedo, J. (Ed.) Manual de protecção integrada do olival. Mirandela, João Azevedo.Google Scholar
Bertacchini, E. (2009) Regional legislation in Italy for the protection of local varieties. Journal of Agriculture and Environment for International Development 103(1/2), 5163.Google Scholar
Bertolaccini, I., Nunez-Perez, E. & Tizado, E.J. (2008) Effect of wild flowers on oviposition of Hippodamia variegata (Coleoptera, Coccinellidae) in the laboratory. Journal of Economic Entomology 101(6), 17921797.Google Scholar
Boller, E.F. (2001) Functional biodiversity and agro-ecosystems management: identified information gaps. Integrated Fruit Protection. IOBC/WPRS Bulletin 24(5), 14.Google Scholar
Böller, E., Häni, F. & Poehling, H. (2004) Ecological infrastructures, ideabook on functional biodiversity at the farm level – temperate zones of Europe. IOBCwprs Comm. Integr. Prod. Guid. Endors, Lindau, Switzerland, LBL. 220 p.Google Scholar
Bugg, R.L. & Waddington, C. (1994) Using cover crops to manage arthropod pests of orchards: a review. Agriculture, Ecosystems & Environment 50, 1128.Google Scholar
Bugg, R., Ellis, R. & Carlson, R. (1989) Ichneumonidae (Hymenoptera) using extrafloral nectar of faba bean (Vicia faba L., Fabaceae) in Massachusetts. Biological Agriculture and Horticulture 6, 107114.Google Scholar
Bugg, R.L., Anderson, J.H. Thomsen, C.D. & Chandler, J. (1998) Farmscaping in California: managing hedgerows, roadside and wetland plantings, and wild plants for biointensive pest management. pp. 337374 in Picket, C.H. & Bugg, R.L. (Eds) Enhancing Biological Control. Berkeley, CA, University of California Press.Google Scholar
Campos, M. & Ramos, P. (1981) Contribución al estudio de la entomocenosis de Prays oleae Bern. (Lep. Hyponomeutidae) en Granada (España). Acta Oecologica, Oecologia Applicata 2(1), 2735.Google Scholar
Castroviejo, S. (1997) Flora iberica, plantas vasculares de la Península Ibérica e Islas Baleares Santiago Castroviejo, Real Jardín Botánico, Madrid, CSIC.Google Scholar
Daniel, T.L., Kingsolver, J.G. & Meyhofer, E. (1989) Mechanical determinants of nectar-feeding energetics in butterflies, Muscle mechanics, feeding geometry, and functional equivalence. Oecologia 79, 6675.Google Scholar
Domínguez Gento, A., Roselló Oltra, J. & Aguado Sáez, J. (2002) Cubiertas vegetales: hierbas adventicias y abonos verdes. pp. 4777 in Sociedad Española de Agricultura Ecológica (Eds), Diseño y manejo de la diversidad vegetal en agricultura ecológica. Valencia, Phytoma-España.Google Scholar
Fiedler, A. & Landis, D. (2007 a) Attractiveness of Michigan native plants to Arthropod natural enemies and herbivores. Entomological Society of America 36(4), 751765.Google Scholar
Fiedler, A. & Landis, D. (2007 b) Plant characteristics associated with natural enemy attractiveness to Michigan native plants. Environmental Entomology 36, 878886.Google Scholar
Fiedler, A., Landis, D. & Wratten, S. (2008) Maximizing ecosystem services from conservation biological control, the role of habitat management. Biological Control 45, 254271.Google Scholar
Gonçalves, F., Oliveira, A. & Torres, L. (2007) Contribuição para o conhecimento do ciclo biológico da traça-da-oliveira, Prays oleae (Bernard), na Terra Quente Transmontana II. Colóquio Nacional de Horticultura Biológica, Lisboa, 19 e 20 de Abril, pp. 283–290.Google Scholar
Gurr, G.M., Van Emden, H.F. & Wratten, S.D. (1998) Habitat manipulation and natural enemy efficiency, implications for the control of pests in. pp. 155183 in Barbosa, P. (Ed.) Conservation Biological Control. San Diego, Academic Press.Google Scholar
Harmon, J.P., Ives, A.R., Losey, J.E., Olson, A.C. & Rauwald, K.S. (2000) Coleomegilla maculata (Coleoptera, Coccinellidae) predation on pea aphids promoted by proximity to dandelions. Oecologia 125, 543548.Google Scholar
Heil, M. (2015) Extrafloral nectar at the plant-insect interface: a spotlight on chemical ecology, phenotypic plasticity, and food webs. Annual Review of Entomology 60, 213232.Google Scholar
Hickman, J.M. & Wratten, S.D. (1996) Use of Phacelia tanacetifolia strips to enhance biological control of aphids by hoverfly larvae in cereal fields. Journal Economic Entomology 89, 835840.Google Scholar
Idris, A.B. & Grafius, E. (1995) Wildflowers as nectar sources for Diadegma insulare (Hymenoptera, Ichneumonidae), a parasitoid of diamondback moth (Lepidoptera, Yponomeutidae). Environmental Entomology 24, 17261735.Google Scholar
Irvin, N.A., Hoddle, M.S. & Castle, S.J. (2007) The effect of resource provisioning and sugar composition of foods on longevity of three Gonatocerus spp., egg parasitoids of Homalodisca vitripennis . Biological Control 40, 6979.Google Scholar
Isaacs, R., Tuell, J., Fiedler, A., Gardiner, M. & Landis, D. (2009) Maximizing arthropod-mediated ecosystem services in agricultural landscapes: the role of native plants. Frontiers in Ecology and the Environment 7, 196203.Google Scholar
Jervis, M. (1998) Functional and evolutionary aspects of mouthpart structure in parasitoid wasps. Biological Journal of the Linnean Society 63, 461493.Google Scholar
Jervis, M., Kidd, N., McEwen, P., Campos, M. & Lozano, C. (1992) Biological control strategies in olive pest management. Research Collaboration in European IPM Systems 52, 3139.Google Scholar
Jonsson, M., Wratten, S.D., Robinson, K.A. & Sam, S.A. (2009) The impact of floral resources and omnivory on a four trophic level food web. Bulletin of Entomological Research 99, 275285.Google Scholar
Krenn, H., Plant, J. & Szucsich, N. (2005) Mouthparts of flower-visiting insects. Arthropod Structure and Development 34, 140.Google Scholar
Landis, D., Wratten, S. & Gurr, G. (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology 45, 175201.Google Scholar
Lavandero, B., Wratten, S., Shishehbor, P. & Worner, S. (2005) Enhancing the effectiveness of the parasitoid Diadegma semiclausum (Helen), movement after use of nectar in the field. Biological Control 34, 152158.Google Scholar
Lövei, G., Hodgson, D., Macleod, A. & Wratten, S. (1993) Attractiveness of some novel crops for flower-visiting hoverflies (Diptera, Syrphidae), comparison from two continents in S.D. pp. 368370 in Corey, S. & Milne, W. (Eds) Pest Control and Sustainable Agriculture. Canberra, Australia, CSIRO.Google Scholar
Maingay, H., Bugg, R., Carlson, R. & Davidson, N. (1991) Predatory and parasitic wasps (Hymenoptera) feeding at flowers of sweet fennel (Foeniculum vulgare Miller Var Dulce Battandier and Trabut, Apiaceae) and spearmint (Menthas picata L, Lamiaceae) in Massachusetts. Biological Agriculture and Horticulture 7, 363383.Google Scholar
Nave, A., Crespí, A., Campos, M. & Torres, L.M. 2009. Olive grove weeds with potential interest in the natural control of the olive moth, Prays oleae. XII Congresso da Sociedad Española de Malherbologia (SEMh)/XIX Congresso da Asociacion Latinoamericana de Malezas (ALAM)/II Congresso Iberico de Ciencias de las Malezas (IBMC), Lisboa – 11, 12 e 13 de Novembro 2009, pp. 39–42.Google Scholar
Nentwig, W. (1998) Weedy plant species and their beneficial arthropods, potential for manipulation in field crops. pp. 4971 in Pickett, C.H. & Bugg, R.L. (Eds) Enhancing Biological Control. Berkeley, CA, University of California Press.Google Scholar
Nicholls, C., Parrella, M. & Altieri, M. (2000) Reducing the abundance of leafhoppers and thrips in a northern California organic vineyard through maintenance of full season floral diversity with summer cover crops. Agricultural and Forest Entomology 2, 107113.Google Scholar
Pinheiro, L., Torres, L.M., Raimundo, J. & Santos, S.A.P. (2013 a) Effect of seven species of the family Asteraceae on longevity and nutrient levels of Episyrphus balteatus . BioControl 58, 797806.CrossRefGoogle Scholar
Pinheiro, L.A., Torres, L., Raimundo, J. & Santos, S.A.P. (2013 b) Effect of floral resources on longevity and nutrient levels of Episyrphus balteatus (Diptera, Syrphidae). Biological Control 67, 178185.Google Scholar
Ramos, P. & Ramos, J.M. (1990) Veinte años de observaciones sobre la depredación oófaga en Prays oleae Bern. Granada (España), 1970–1989. Boletín Sanidad Vegetal Plagas 16, 119127.Google Scholar
Rebek, E., Sadof, C. & Hanks, L. (2005) Manipulating the abundance of natural enemies in ornamental landscapes with floral resource plants. Biological Control 33, 203216.CrossRefGoogle Scholar
Robinson, K.A., Jonsson, M., Wratten, S.D., Wade, M.R. & Buckley, H. (2008) Implications of floral resources for predation by an omnivorous lacewing. Basic and Applied Ecology 9, 172181.Google Scholar
Rogers, M. & Potter, D. (2004) Potential for sugar sprays and flowering plants to increase parasitism of white grubs (Coleoptera, Scarabaeidae) by Tiphiid wasps (Hymenoptera, Tiphiidae). Environmental Entomology 33, 619626.Google Scholar
Root, R.B. (1973) Organization of a plant-arthropod association in simple and diverse habitats, the fauna of collards (Brassica oleracea). Ecology Monographs 43, 95124.Google Scholar
Shrewsbury, P., Lashomb, J., Hamilton, G., Zhang, J., Patt, J. & Casagrande, R. (2004) The influence of flowering plants on herbivore and natural enemy abundance in ornamental landscapes. International Journal of Ecology and Environmental Sciences 30, 2333.Google Scholar
Sivinski, J. (2014) The attraction of lepidoptera to flowering plants also attractive to parasitoids (Diptera, Hymenoptera). Florida Entomologist 97(4), 13171327.Google Scholar
Soares, M.F., Gomes, P., Simão, P., Veiga, C., Bento, A. & Torres, L. (2005) Parasitismo associado à traça-da-oliveira, Prays oleae Bernard, na Beira Interior Norte. Actas do VII Encontro Nacional de Protecção Integrada, Instituto Politécnico de Coimbra, Coimbra, 6 e 7 de Dezembro de 2005, pp. 371–378.Google Scholar
SPSS Inc., IBM Company (2010) IBM, SPSS Statistic for Windows, version 19.0.0. 492, New York.Google Scholar
Stavraki, H.G. (1984) Use of Trichogramma spp. against the carpophagous generation of Prays oleae (Bern.) in Greece. In Integrated Pest Control in Olive-Grove. Proceedings of the CEC/FAO/IOBC International Joint Meeting, Pisa, pp. 242–246.Google Scholar
Taylor, R.M. & Bradley, R.A. (2009) Plant nectar increases survival, molting, and foraging in a wandering spider. Journal of Arachnology 37, 232237.Google Scholar
Tompkins, J-M. (2010) Ecosystem services provided by native New Zealand plants in vineyards. PhD Thesis. Universidade de Lincoln. 282 p.Google Scholar
Torres, L. (2007) A protecção integrada do olival no contexto da produção integrada. pp. 31125 in Torres, L. & Azevedo, J. (coord) (Eds) Manual de protecção integrada do olival. Portugal, Mirandela.Google Scholar
Van Rijn, P.C.J. (2012) The suitability of field margin flowers as food source for Chrysoperla lacewings. IOBC/WPRS Bulletin 75, 213216.Google Scholar
Van Rijn, P.C.J., Kooijman, J. & Wäckers, F.L. (2006) The impact of floral resources on syrphid performance and cabbage aphid biological control. IOBC/WPRS Bulletin 29(6), 149152.Google Scholar
Vattala, H.D., Wratten, S.D., Phillips, C.B. & Wackers, F.L. (2006) The influence of flower morphology and nectar quality on the longevity of a parasitoid biological control agent. Biological Control 39(2), 179185.Google Scholar
Wäckers, F.L., Björnsen, A. & Dorn, S. (1996) A comparison of flowering herbs with respect to their nectar accessibility for the parasitoid Pimpla turionellae . Proceedings of the Section Experimental and Applied Entomology of The Netherlands Entomological Society 7, 177182.Google Scholar
Wäckers, F.L., Van Rijn, P.C.J. & Bruin, J. (2005) Plant-provided Food for Carnivorous Insects: A Protective Mutualism and its Applications. UK, Cambridge University Press, 356 p.Google Scholar
Winkler, K. (2005) Assessing the risks and benefits of flowering field edges, Strategic use of nectar sources to boost biological control. PhD Thesis. Laboratory of Entomology. Wageningen University, Wageningen. 118 p.Google Scholar
Winkler, K., Wäckers, F., Valdivia, L., Larraz, V. & Van Lenteren, J. (2003) Strategic use of nectar sources to boost biological control. Landscape Management for Functional Biodiversity. IOBC/WPRS Bulletin 26, 209214.Google Scholar
Winkler, K., Wäckers, F.L., Kaufman, L.V. & Van Lenteren, J.C. (2009) Nectar exploitation by herbivores and their parasitoids is a function of flower species and relative humidity. Biological Control 50, 299306.Google Scholar
Wratten, S.D. & Van Emden, H.F. (1995) Habitat management for enhanced activity of natural enemies of insect pests. pp. 117145 in Glen, D.M., Geaves, M.P. & Anderson, H.M. (Eds) Ecology and Integrated Farming Systems. Chichester, John Wiley.Google Scholar
Wratten, S.D., Lavandero, B.I., Tylianakis, J., Vattala, D., Cilgi, T. & Sedcole, R. (2003) Effects of flowers on parasitoid longevity and fecundity. New Zealand Plant Protection 56, 233238.Google Scholar