Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T03:48:17.943Z Has data issue: false hasContentIssue false

Evaluation of cold storage techniques to improve mass rearing of Cleruchoides noackae from Thaumastocoris peregrinus eggs

Published online by Cambridge University Press:  28 November 2023

Angelo Peruffo Rodrigues
Affiliation:
Departamento de Fitotecnia e Fitossanitarismo, Universidade Federal do Paraná, Curitiba, Paraná, Brasil
Wagner de Souza Tavares
Affiliation:
PT. Itci Hutani Manunggal, Balikpapan, East Kalimantan, Indonesia
José Cola Zanuncio
Affiliation:
Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
Carlos Frederico Wilcken
Affiliation:
Faculdade de Ciências Agronômicas, Departamento de Proteção Vegetal, Universidade Estadual Paulista ‘Júlio de Mesquita Filho’, Botucatu, São Paulo, Brasil
Luis Amilton Foerster
Affiliation:
Departamento de Fitotecnia e Fitossanitarismo, Universidade Federal do Paraná, Curitiba, Paraná, Brasil
Leonardo Rodrigues Barbosa*
Affiliation:
Empresa Brasileira de Pesquisa Agropecuária – Embrapa Florestas, Colombo, Paraná, Brasil
*
Corresponding author: Leonardo Rodrigues Barbosa; Email: [email protected]

Abstract

The egg parasitoid Cleruchoides noackae Lin & Huber, 2007 (Hymenoptera: Mymaridae) is originated from Australia and the main biological control agent of Thaumastocoris peregrinus Carpenter & Dellapé, 2006 (Hemiptera: Thaumastocoridae) on Eucalyptus L'Hér (Myrtaceae). Companies that grow Eucalyptus are in need of a mass rearing protocol to increase the number of individuals produced and improve the quality of this parasitoid. The aim of this study was to define a protocol for mass rearing C. noackae in T. peregrinus eggs, based in the evaluations of the key biological attributes of this parasitoid in the parental and F1 generations, after the cold storage of the parasitised host eggs. Two methods were tested as C. noackae rearing protocols. In the first, parasitised eggs of T. peregrinus by C. noackae were cold stored for 7 days after being left in a climatic chamber at 24 ± 2°C, 60 ± 10% RH and a photoperiod of 12:12 (light:dark) h (standard environmental conditions) for 3, 6, 9 or 12 days. In the second, T. peregrinus eggs parasitised by C. noackae were maintained in a climatic chamber under standard environmental conditions for 6 days, after which these eggs were cold-stored for 0 (control), 7, 14 or 21 days. Parasitism (%), and the development period (parasitism to adult) and female proportion (%) of C. noackae were evaluated. Based on the results (parental generation: parasitism, around 45%; F1 generation: parasitism, around 55%; development period, around 16 days; female proportion, around 60%), eggs should be stored at 5°C on the sixth day after parasitism by C. noackae and maintained at this temperature for 7 days. The cold storage of T. peregrinus eggs, after parasitism, can be included in the mass rearing protocols of the parasitoid C. noackae.

Type
Research Paper
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbosa, LR, Rodrigues, ÂP, Soler, L da S, Fernandes, BV, de Castro e Castro, BM, Wilcken, CF and Zanuncio, JC (2017) Establishment in the field of Cleruchoides noackae (Hymenoptera: Mymaridae), an exotic egg parasitoid of Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae). Florida Entomologist 100, 372374.CrossRefGoogle Scholar
Barbosa, LR, Rodrigues, ÂP, de Souza, LN, Foerster, LA, de Souza, AR, de Castro e Castro, BM, Wilcken, CF and Zanuncio, JC (2018) Development of Cleruchoides noackae, an egg-parasitoid of Thaumastocoris peregrinus, in eggs laid on different substrates, with different ages and post-cold storage. BioControl 63, 193202.CrossRefGoogle Scholar
Barbosa, LR, Santos, F, Soliman, EP, Rodrigues, AP, Wilcken, CF, Campos, JM, Zanuncio, AJV and Zanuncio, JC (2019) Biological parameters, life table and thermal requirements of Thaumastocoris peregrinus (Heteroptera: Thaumastocoridae) at different temperatures. Scientific Reports 9, 10174.CrossRefGoogle ScholarPubMed
Becchi, LK, Jorge, C, de Camargo, GF, Barbosa, LR, Soares, MA, Serrão, JE, Zanuncio, JC and Wilcken, CF (2020) Oviposition behaviour of mated or unmated Cleruchoides noackae (Hymenoptera: Mymaridae). PLoS ONE 15, e0239285.CrossRefGoogle ScholarPubMed
Becchi, LK, Barbosa, LR, Serrão, JE, Zanuncio, JC, Sampaio, MV, Domingues, MM and Wilcken, CF (2023) Thermal requirements, fertility life table and biological parameters of Cleruchoides noackae (Hymenoptera: Mymaridae) at different temperatures. PeerJ 11, e14911.CrossRefGoogle Scholar
Colinet, H and Boivin, G (2011) Insect parasitoids cold storage: a comprehensive review of factors of variability and consequences. Biological Control 58, 8395.CrossRefGoogle Scholar
Colinet, H and Hance, T (2009) Male reproductive potential of Aphidius colemani (Hymenoptera: Aphidiinae) exposed to constant or fluctuating thermal regimes. Environmental Entomology 38, 242249.CrossRefGoogle ScholarPubMed
Colinet, H, Hance, T and Vernon, P (2006) Water relations, fat reserves, survival, and longevity of a cold-exposed parasitic wasp Aphidius colemani (Hymenoptera: Aphidiinae). Environmental Entomology 35, 228236.CrossRefGoogle Scholar
de Souza, AR, Candelaria, MC, Barbosa, LR, Wilcken, CF, Campos, JM, Serrão, JE and Zanuncio, JC (2016) Longevity of Cleruchoides noackae (Hymenoptera: Mymaridae), an egg parasitoid of Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae), with various honey concentrations and at several temperatures. Florida Entomologist 99, 3337.CrossRefGoogle Scholar
Domingues, MM, Becchi, LK, Velozo, SGM, de Souza, AR, Barbosa, LR, Soares, MA, Serrão, JE, Zanuncio, JC and Wilcken, CF (2020) Selectivity of mycoinsecticides and a pyrethroid to the egg parasitoid Cleruchoides noackae (Hymenoptera: Mymaridae). Scientific Reports 10, 14617.CrossRefGoogle Scholar
do Nascimento-Machado, D, Corrêa-Costa, E, Perini, CR, Andrade-Ugalde, G, Alves-Saldanha, M, Leitão, JV, Lovato-Colpo, T, Amemman, JA and Cordero-Rivera, A (2019) The ongoing dispersion of the Eucalyptus bronze bug (Thaumastocoris peregrinus) in Spain. Forest Systems 28, 17.Google Scholar
Forouzan, F, Jalali, MA, Ziaaddini, M and Rad, HH (2018) Effect of cold storage on biological traits of Psix saccharicola (Hymenoptera: Platygastridae), an egg parasitoid of Acrosternum arabicum (Hemiptera: Pentatomidae). Journal of Economic Entomology 111, 11441150.CrossRefGoogle ScholarPubMed
Hinde, J and Demétrio, CGB (1998) Overdispersion: model and estimation. Computational Statistics & Data Analysis 27, 151170.CrossRefGoogle Scholar
Hothorn, T, Bretz, F and Westfall, P (2008) Simultaneous inference in general parametric models. Biometrical Journal 50, 346363.CrossRefGoogle ScholarPubMed
Jacobs, DH and Neser, S (2005) Thaumastocoris australicus Kirkaldy (Heteroptera: Thaumastocoridae): a new insect arrival in South Africa, damaging to Eucalyptus trees. South African Journal of Science 101, 233236.Google Scholar
Kageyama, D, Narita, S and Wanatable, M (2021) Insect sex determination manipulated by their endosymbionts: incidences, mechanisms and implications. Insects 3, 161199.CrossRefGoogle Scholar
Levie, A, Vernon, P and Hance, T (2005) Consequences of acclimation on survival and reproductive capacities of cold-stored mummies of Aphidius rhopalosiphi (Hymenoptera: Aphidiinae). Journal of Economic Entomology 98, 704708.CrossRefGoogle ScholarPubMed
Lin, N-Q, Huber, JT and La Salle, J (2007) The Australian genera of Mymaridae (Hymenoptera: Chalcidoidea). Zootaxa 1596, 1111.CrossRefGoogle Scholar
Lo, N, Montagu, A, Noack, A, Nahrung, H, Wei, H, Eldridge, M, Gray, K-A, Rose, HA, Cassis, G, Johnson, RN and Lawson, S (2019) Population genetics of the Australian eucalypt pest Thaumastocoris peregrinus: evidence for a recent invasion of Sydney. Journal of Pest Science 92, 201212.CrossRefGoogle Scholar
Machado, D do N, Costa, EC, Guedes, JVC, Barbosa, LR, Martínez, G, Mayorga, SI, Ramos, SO, Branco, M, Garcia, A, Vanegas-Rico, JM, Jiménez-Quiroz, E, Laudonia, S, Novoselsky, T, Hodel, DR, Arakelian, G, Silva, H, Perini, CR, Valmorbida, I, Ugalde, GA and Arnemann, JA (2020) One maternal lineage leads the expansion of Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae) in the New and Old Worlds. Scientific Reports 10, 3487.CrossRefGoogle ScholarPubMed
Mohamed, HO and El-Heneidy, AH (2020) Effect of cold storage temperature on quality of the parasitoid, Trichogrammatoidea bactrae Nagaraja (Hymenoptera: Trichogrammatidae). Egyptian Journal of Biological Pest Control 30, 87.CrossRefGoogle Scholar
Montagu, A, Robinson, K, Noack, A, Nahrung, H, Lawson, S and Lo, N (2020) Global incursion pathways of Thaumastocoris peregrinus, an invasive Australian pest of eucalypts. Biological Invasions 22, 35013518.CrossRefGoogle Scholar
Moral, RA, Hinde, J and Demétrio, CGB (2017) Half-normal plots and overdispersed models in R: the hnp package. Journal of Statistical Software 81, 123.CrossRefGoogle Scholar
Mutitu, EK, Garnas, JR, Hurley, BP, Wingfield, MJ, Harney, M, Bush, SJ and Slippers, B (2013) Biology and rearing of Cleruchoides noackae (Hymenoptera: Mymaridae), an egg parasitoid for the biological control of Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae). Journal of Economic Entomology 106, 19791985.CrossRefGoogle ScholarPubMed
Mutitu, EK, Hoareau, TB, Hurley, BP, Garnas, JR, Wingfield, MJ and Slippers, B (2020) Reconstructing early routes of invasion of the bronze bug Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae): cities as bridgeheads for global pest invasions. Biological Invasions 22, 23252338.CrossRefGoogle Scholar
Nadel, RL and Noack, AE (2012) Current understanding of the biology of Thaumastocoris peregrinus in the quest for a management strategy. International Journal of Pest Management 58, 257266.CrossRefGoogle Scholar
Nadel, RL, Slippers, B, Scholes, MC, Lawson, SA, Noack, AE, Wilcken, CF, Bouvet, JP and Wingfield, MJ (2010) DNA bar-coding reveals source and patterns of Thaumastocoris peregrinus invasions in South Africa and South America. Biological Invasions 12, 10671077.CrossRefGoogle Scholar
Nadel, RL, Wingfield, MJ, Scholes, MC, Lawson, SA, Noack, AE, Neser, S and Slippers, B (2012) Mitochondrial DNA diversity of Cleruchoides noackae (Hymenoptera: Mymaridae): a potential biological control agent for Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae). BioControl 57, 397404.CrossRefGoogle Scholar
Noack, AE, Kaapro, J, Bartimote-Aufflick, K, Mansfield, S and Rose, HA (2009) Efficacy of imidacloprid in the control of Thaumastocoris peregrinus on Eucalyptus scoparia in Sydney, Australia. Arboriculture & Urban Forestry 35, 192196.CrossRefGoogle Scholar
Pitcher, SA, Hoffmann, MP, Gardner, J, Wright, MG and Kuhar, TP (2002) Effect of cold storage on emergence and fitness of Trichogramma ostriniae (Hymenoptera: Trichogrammatidae) reared on Sitotroga cerealella (Olivier) (Lepidopera: Gelechiidae) eggs. BioControl 47, 525535.CrossRefGoogle Scholar
R Core Team (2016) R: A Language and Environment for Statistical Computing. Vienna, Austria: R foundation for statistical computing. Available at https://www.R-project.orgGoogle Scholar
Rodrigues, SMM and Sampaio, MV (2011) Cold storage of Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae). Arquivos do Instituto Biológico 78, 4551.CrossRefGoogle Scholar
Sankararaman, H, Palanivel, S, Manickavasagam, S and Rameshkumar, A (2021) First report of Cleruchoides Lin & Huber (Hymenoptera: Mymaridae) from the Oriental region with description of a new species from India. Journal of Natural History 55, 11611167.CrossRefGoogle Scholar
Santadino, M, Brentassi, ME, Fanello, DD and Coviella, C (2017) First evidence of Thaumastocoris peregrinus (Heteroptera: Thaumastocoridae) feeding from mesophyll of Eucalyptus leaves. Environmental Entomology 46, 251257.Google ScholarPubMed
Sinulingga, NGHB, Tarigan, M, Tavares, W de S, Ansor, K, Pasaribu, I, Kkadan, SK, Panjaitan, RA, Puspita, KD, Abad, JIM and Duran, A (2021) The parasitoid Closterocerus chamaeleon has a greater development and survival rate than of its hosts, the Eucalyptus gall wasps Ophelimus eucalypti and Ophelimus maskelli in Sumatra, Indonesia. Annals of Applied Biology 179, 354367.CrossRefGoogle Scholar
Soliman, EP, Wilcken, CF, Pereira, JM, Dias, TKR, Zaché, B, dal Pogetto, MHFA and Barbosa, LR (2012) Biology of Thaumastocoris peregrinus in different eucalyptus species and hybrids. Phytoparasitica 40, 223230.CrossRefGoogle Scholar
Spínola-Filho, PR de C, Leite, GLD, Soares, MA, Alvarenga, AC, de Paulo, PD, Tuffi-Santos, LD and Zanuncio, JC (2014) Effects of duration of cold storage of host eggs on percent parasitism and adult emergence of each of ten Trichogrammatidae (Hymenoptera) species. Florida Entomologist 97, 1421.CrossRefGoogle Scholar
Tukey, J (1949) Comparing individual means in the analysis of variance. Biometrics 5, 99114.CrossRefGoogle ScholarPubMed
Wilcken, CF, Soliman, EP, Nogueira de Sá, LA, Barbosa, LR, Dias, TKR, Ferreira-Filho, PJ and Oliveira, RJR (2010) Bronze bug Thaumastocoris peregrinus Carpintero & Dellapé (Hemiptera: Thaumastocoridae) on Eucalyptus in Brazil and its distribution. Journal of Plant Protection Research 50, 201205.CrossRefGoogle Scholar
Wilcken, CF, do Amaral Dal Pogetto, MHF, Lima, ACV, Soliman, EP, Fernandes, BV, da Silva, IM, Zanuncio, AJV, Barbosa, LR and Zanuncio, JC (2019) Chemical vs entomopathogenic control of Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae) via aerial application in eucalyptus plantations. Scientific Reports 9, 9416.CrossRefGoogle ScholarPubMed