Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T03:07:35.008Z Has data issue: false hasContentIssue false

Electrophoretic study of enzymes from cereal aphid populations. III. Spatial and temporal genetic variation of populations of Sitobion avenae (F.) (Hemiptera: Aphididae)

Published online by Cambridge University Press:  10 July 2009

H. D. Loxdale
Affiliation:
Rothamsted Experimental Station, Harpenden, Herts., AL5 2JQ, UK
I. J. Tarr
Affiliation:
Rothamsted Experimental Station, Harpenden, Herts., AL5 2JQ, UK
C. P. Weber
Affiliation:
Rothamsted Experimental Station, Harpenden, Herts., AL5 2JQ, UK
C. P. Brookes
Affiliation:
Rothamsted Experimental Station, Harpenden, Herts., AL5 2JQ, UK
P. G. N. Digby
Affiliation:
Rothamsted Experimental Station, Harpenden, Herts., AL5 2JQ, UK
P. Castañera
Affiliation:
Departmento de Proteccion Vegetal, Instituto Nacional de Investigaciones Agrarias, Carratera de La Corunña Km 7/5, Apartado 8.111, Madrid, Spain

Abstract

Ninety-two individuals of Sitobion avenae (F.) collected throughout Britain in 1979 and 1980, were cloned and investigated genetically by electrophoresis of 14 enzymes representing 26 loci. Percentage polymorphism (P) differed considerably between years, 64% (16/25 loci) in 1979 and 19% (5/26) in 1980, whereas average heterozygosity () was low (ca. 2%) in both years and confined mainly to one locus, EST-1. The prevalence of homozygous allozyme variation supports ecological findings suggesting S. avenae to be largely anholocyclic in Britain. In 1981 and 1982, large populations, sampled from 11 sites in Britain and Spain, were examined at 13 loci. ranged from 2 to 7·6%, with heterozygosity restricted again mainly to EST-1. Some alleles were unique to certain geographical regions (including Britain or Spain); others showed significant spatial, and in two British populations examined in successive years, temporal frequency differences. Calculating Nei’s genetic identity (I) and distance (D) coefficients for each population pair mostly gave I>0·8, D<0·2 with overall means (± s.e.m.) of 0·896 ± 0·006 and 0·111 ± 0·006, respectively, which are comparable with geographical population values for other insects. D was poorly correlated with geographical distance, although values were slightly greater (ca. 0·025) for international population comparisons and did not overlap on a principal coordinates plot. The overall population similarity suggests substantial inter-population gene flow; geographical barriers may have restricted movements but seemingly have not led to allopatric race formation. P and values resemble those for many other aphids, but H values are lower than typically found in other insects. Possible causes of this heterozygote deficiency are discussed.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ayala, F. J. (1983). Enzymes as taxonomic characters.—pp. 326 in Oxford, G. S. & Rollinson, D. (Eds.). Protein polymorphism: adaptive and taxonomic significance.—405 pp. London & New York, Academic Press (Proc. Systematics Assoc. Symp. July, 1982, special vol. no. 24).Google Scholar
Ayala, F. J., Powell, J. R., Tracey, M. L., Mourāo, C. A. & Pérez-Salas, S. (1972). Enzyme variability in the Drosphila willistoni group. 4. Genic variation in natural populations ofDrosophila willistoni.—Genetics 70, 113139.CrossRefGoogle Scholar
Ayala, F. J., Tracey, M. L., Hedgecock, D. & Richmond, R. C. (1974). Genetic differentiation during the speciation process in Drosophila.—Evolution 28, 576592.CrossRefGoogle ScholarPubMed
Ayala, F. J. & Valentine, J. W. (1978). Genetic variation and resource stability in marine invertebrates.—pp. 2351 in Battaglia, B. & Beardmore, J. (Eds.). Marine organisms.—469 pp. New York, Plenum Press.Google Scholar
Baker, J. P. (1979). Electrophoretic studies on populations of Myzus persicae in Scotland from October to December, 1976.—Ann. appl. Biol. 91, 159164.CrossRefGoogle Scholar
Barker, J. S. F. (1981). Selection at allozyme loci in cactophilic Drosophila.—pp. 161—184 in Gibson, J. B. & Oakeshott, J. G. (Eds.). Genetic studies of Drosophila populations.—267 pp. Canberra, Australian Nat. Univ. Press (Proceedings from the Kioloa Conference).Google Scholar
Berlocher, S. H. (1979). Biochemical approaches to strain, race, and species discriminations.—pp. 137144 in Hoy, M. A. & McKelvey, J. J. Jr., (Eds.). Genetics in relation to insect management. A Rockefeller Foundation Conference, March 31–April 5, 1978, Bellagio, Italy.— 179 pp. New York, Rockefeller Foundation.Google Scholar
Berlocher, S. H. (1980). An electrophoretic key for distinguishing species of the genus Rhagoletis (Diptera: Tephritidae) as larvae, pupae, or adults.—Ann. ent. Soc. Am. 73, 131—137.CrossRefGoogle Scholar
Blackman, R. L. (1974). Life-cycle variation of Myzus persicae (Sulz.) (Horn., Aphididae) in different parts of the world, in relation to genotype and environment.—Bull. ent. Res. 63, 595607.CrossRefGoogle Scholar
Blackman, R. L. (1979). Stability and variation in aphid clonal lineages.—Biol. J. Linnean Soc. Lond. 11, 259277.CrossRefGoogle Scholar
Blackman, R. L. (1981). Species, sex and parthenogenesis in aphids.—pp. 7585 in Forey, P. L. (Ed.). The evolving biosphere.—311 pp. Cambridge, University Press.Google Scholar
Carter, N., Mclean, I. F. G., Watt, A. D. & Dixon, A. F. G. (1980). Cereal aphids: a case study and review.—Applied Biology 5, 271—348.Google Scholar
Coyne, J. A., Bundgaard, J. & Prout, T. (1983). Geographic variation of tolerance to environmental stress in Drosophila pseudoobscura.—Am. Nat. 122, 474488.CrossRefGoogle Scholar
Dean, G. J. W. (1973). Bionomics of aphids reared on cereals and some Grarmineae.—Ann. appl. Biol. 73, 127—135.CrossRefGoogle Scholar
Dean, G. J. (1978). Observations on the morphs of Macrosiphum avenae and Metopolophium dirhodum on cereals during the summer and autumn.—Ann. appl. Biol. 89, 17.CrossRefGoogle Scholar
Dobzhansky, T., Ayala, F. J., Stebbins, G. L. & Valentine, J. W. (1977). Evolution.—572 pp. San Francisco, W. H. Freeman & Co.Google Scholar
Franklin, I. R. (1981). An analysis of temporal variation at isozyme loci in Drosophila melanogaster.—pp. 217236 in Gibson, J. B. & Oakeshott, J. G. (Eds.). Genetic studies of Drosophila populations.—267 pp. Canberra, Australian Nat. Univ. Press (Proceedings from the Kioloa Conference).Google Scholar
González, D., Gordh, G., Thompson, S. N. & Adler, J. (1979). Biotype discrimination and its importance to biological control.—pp. 129136 in Hoy, M. A. & McKelvey, J. J. Jr., (Eds.). Genetics in relation to insect management. A Rockefeller Foundation Conference, March 31–April 5, 1978, Bellagio, Italy.—179 pp. New York, Rockefeller Foundation.Google Scholar
Gower, J. C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis.—Biometrika 53, 325338.CrossRefGoogle Scholar
Gower, J. C. (1971). Statistical methods of comparing different multivariate analyses of the same data.—pp. 139149 in Hodson, F. K., Kendall, D. G. & Tautu, P. (Eds.). Mathematics in the archeological and historical sciences.—565 pp. Edinburgh, Univ. Press.Google Scholar
Hand, S. C. (1982). Overwintering and dispersal of cereal aphids.—Ph.D. thesis, Univ. Southampton.Google Scholar
Hartl, D. L. (1980). Principles of populations genetics.—488 pp. Massachusetts, Sinauer Associates Inc.Google Scholar
Hilburn, L. R. (1980). Population genetics of Chironomous stigmaterus Say (Diptera: Chironomidae): 2. Protein variability in populations of the southwestern United States.—Evolution 34, 696704.CrossRefGoogle Scholar
Hudson, A. & Lefkovitch, L. P. (1982). Allozyme variation in four Ontario populations of Xestia adela and Xestia dolosa and in a British population of Xestia C-nigrum (Lepidoptera: Noctuidae).—Ann. ent. soc. Am. 75, 250256.CrossRefGoogle Scholar
Jacobson, J. W. & Hsiao, T. H. (1983). Isozyme variation between geographic populations of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae).—Ann. ent. Soc. Am. 76. 162166.CrossRefGoogle Scholar
Jones, J. S., Bryant, S. H., Lewontin, R. C., Moore, J. A. & Prout, T. (1981). Gene flow and the geographical distribution of a molecular polymorphism in Drosophila pseudoobscura.—Genetics 98, 157178.CrossRefGoogle ScholarPubMed
Lacy, R. C. (1983). Structure of genetic variation within and between populations of mycophagous Drosophila.—Genetics 104, 8194.CrossRefGoogle ScholarPubMed
Lewontin, R. C. (1974). The genetic basis of evolutionary change.—346 pp. New York, Columbia Univ. Press.Google Scholar
Lowe, H. J. B. (1981). Resistance and susceptibility to colour forms of the aphid Sitobion avenae in spring and winter wheats (Triticum aestivum).—Ann. appl. Biol. 99, 8798.CrossRefGoogle Scholar
Loxdale, H. D., Castañera, P. & Brookes, C. P. (1983). Electrophoretic study of enzymes from cereal aphid populations. I. Electrophoretic techniques and staining systems for characterising isoenzymes from six species of cereal aphids (Hemiptera: Aphididae).—Bull. ent. Res. 73, 645657.CrossRefGoogle Scholar
May, B. & Holbrook, F. R. (1978). Absence of genetic variability in the green peach aphid, Myzus persicae (Hemiptera: Aphididae).—Ann. ent. Soc. Am. 71, 809—812.CrossRefGoogle Scholar
Maynard Smith, J. (1978). The evolution of sex.—222 pp. Cambridge, Univ. Press.Google Scholar
Mayr, E. (1963). Animal species and evolution.—797 pp. Cambridge, Massachusetts, Harvard Univ. Press.CrossRefGoogle Scholar
Nei, M. (1971). Interspecific gene differences and evolutionary time estimated from electrophoretic data on protein identity.—Am. Nat. 105, 385398.CrossRefGoogle Scholar
Nei, M. (1972). Genetic distance between populations.—Am. Nat. 106, 283292.CrossRefGoogle Scholar
Nei, M. (1975). Molecular population genetics and evolution.—288 pp. Amsterdam, Elsevier.Google ScholarPubMed
Nei, M., Maruyama, T. & Chakraborty, R. (1975). The bottleneck effect and genetic variability in populations.—Evolution 29, 110.CrossRefGoogle ScholarPubMed
Nevo, E. (1978). Genetic variation in natural populations: patterns and theory.—Theor. Populat. Biol. 13, 121—177.CrossRefGoogle ScholarPubMed
Pagliai, A. M. B. (1983). Endomeiosis and parthenogenesis in two strains of Megoura viciae Buckt. (Horn. Aphid.)—pp. 443448 in Atti XIII Congresso Nazionale Italiano di Entomologia.—762 pp. Turin, Istituto di Entomologia Agraria e Apicoltura, Università di Torino.Google Scholar
Powell, J. R., Tabachnick, W. J. & Arnold, J. (1980). Genetics and the origin of a vector population: Aedes aegypti, a case study.—Science, N.Y. 208, 13851387.CrossRefGoogle ScholarPubMed
Prakash, S., Lewontin, R. C. & Hubby, J. L. (1969). A molecular approach to the study of genic heterozygosity in natural populations. 4. Patterns of genic variation in central, marginal and isolated populations of Drosophila pseudoobscura.—Genetics 61, 841858.CrossRefGoogle Scholar
Ramshaw, J. A. M., Coyne, J. A. & Lewontin, R. C. (1979). The sensitivity of gel electrophoresis as a detector of genetic variation.—Genetics 93, 10191037.CrossRefGoogle ScholarPubMed
Sammeta, K. P. V. & Levins, R. (1970). Genetics and ecology.—A. Rev. Genet. 4, 469488.CrossRefGoogle ScholarPubMed
Sawicki, R. M., Devonshire, A. L., Rice, A. D., Moores, G. D., Petzing, S. M. & Cameron, A.(1978). The detection and distribution of organophosphorus and carbamate insecticide resistant Myzus persicae (Sulz.) in Britain in 1976.—Pestic. Sci. 9, 189201.CrossRefGoogle Scholar
Singh, R. S., Hickey, D. A. & David, J. (1982). Genetic differentiation between geographically distant populations of Drosophila melanogaster.—Genetics 101, 235256.CrossRefGoogle ScholarPubMed
Stock, M. W., Pitman, G. B. & Guenther, J. D. (1979). Genetic differences between Douglas-fir beetles (Dendroctonus pseudotsugae) from Idaho and coastal Oregon.—Ann. ent. Soc. Am. 72, 394397.CrossRefGoogle Scholar
Suomalainen, E., Saura, A. & Lokki, J. (1976). Evolution of parthenogenetic insects.—Evol. Biol. 9, 209257.Google Scholar
Suomalainen, E., Saura, A., Lokki, J. & Teeri, T. (1980). Genetic polymorphism and evolution in parthenogenetic animals. Part 9. Absence of variation within parthenogenetic aphid clones.—Theor. & Appl. Genet. 57, 129—132.CrossRefGoogle ScholarPubMed
Tabachnick, W. J. & Powell, J. R. (1979). A world-wide survey of genetic variation in the yellow fever mosquito Aedes aegypti.—Genet. Res. 34, 215229.CrossRefGoogle ScholarPubMed
Tatchell, G. M., Parker, S. J. & Woiwod, I. P. (1983). Synoptic monitoring of migrant insect pests in Great Britain and western Europe. IV. Host plants and their distribution for pest aphids in Great Britain.—Rep. Rothamsted exp. Stn 1982 (2), 45159.Google Scholar
Taylor, L. R., Woiwod, I. P., Tatchell, G. M., Dupuch, M. J. & Nicklen, J. (1982). Synoptic monitoring for migrant insect pests in Great Britain and western Europe. III. The seasonal distribution of pest aphids and the annual aphid aerofauna over Great Britain 1975–80.—Rep. Rothamsted exp. Stn 1981 (2), 23—121.Google Scholar
Taylor, L. R., Woiwod, I. P. & Taylor, R. A. J. (1979). The migratory ambit of the hop aphid and its significance in aphid population dynamics.—J. Anim. Ecol. 48, 955972.CrossRefGoogle Scholar
Tomiuk, J. & Wöhrmann, K. (1980). Enzyme variability in populations of aphids.—Theor. & Appl. Genet. 57, 125127.CrossRefGoogle ScholarPubMed
Tomiuk, J. & Wöhrmann, K. (1981). Changes of the genotype frequencies at the MDH-locus in populations of Macrosiphum rosae (L.) (Hemiptera, Aphididae).—Biol. Zbl. 100, 631640.Google Scholar
Tomiuk, J. & Wöhrmann, K. (1982). Comments on the genetic stability of aphid clones.—Experientia 38, 320321.CrossRefGoogle Scholar
Tomiuk, J. & Wöhrmann, K. (1983). Enzyme polymorphism and taxonomy of aphid species.—Z. zool. Syst. Evolurionsforsch. 21, 266274.CrossRefGoogle Scholar
Tomiuk, J. & Wöhrmann, K. (1984). Genotype variability in natural populations of Macrosiphum rosae (L.) in Europe.—Biol. Zbl. 103, 113122.Google Scholar
Vickerman, G. P. & Wratten, S. D. (1979). The biology and pest status of cereal aphids (Hemiptera: Aphididae) in Europe: a review.—Bull. ent. Res. 69, 132.CrossRefGoogle Scholar
White, M. J. D. (1973). The chromosomes.—6th edn, 214 pp. London, Chapman & Hall.Google Scholar
Wool, D., Bunting, S. W. & Van Emden, H. F. (1978). Electrophoretic study of genetic variation in British Myzus persicae (Sulz.) (Hemiptera, Aphididae).—Biochem. Genet. 16, 9871006.CrossRefGoogle ScholarPubMed
Workman, P. L. & Niswander, J. D. (1970). Population studies on southwestern Indian tribes. II. Local genetic differentiation in the Papago.—Am. J. hum. Genet. 22, 2449.Google ScholarPubMed
Young, J. P. W. (1983). The population structure of cyclic parthenogens.—pp. 361378 in Oxford, G. S. & Rollinson, D. (Eds.). Protein polymorphism: adaptive and taxonomic significance.—405 pp. London & New York, Academic Press (Proc. Systematics Assoc. Symp. July, 1982, special vol. no. 24).Google Scholar