Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-22T17:42:45.009Z Has data issue: false hasContentIssue false

Electrophoretic studies on Culex quinquefasciatus Say from Africa: genetic variability and divergence from Culex pipiens L. (Diptera: Culicidae)

Published online by Cambridge University Press:  10 July 2009

S. Urbanelli
Affiliation:
Department of Genetics and Molecular Biology, University of Rome—La Sapienza, Via Lancisi, 29, 00161 Rome, Italy
L. Bullini
Affiliation:
Department of Genetics and Molecular Biology, University of Rome—La Sapienza, Via Lancisi, 29, 00161 Rome, Italy
F. Villani
Affiliation:
Institute of Parasitology, University of Rome—La Sapienza, Città Universitaria, 00185 Rome, Italy

Abstract

Multilocus electrophoresis was used to study the genetic variation of field samples of Culex quinquefasciatus Say from Mali, Burkina Faso, Nigeria and Mozambique, and a laboratory strain from Senegal. Phallosome morphology (the DV/D ratio) was used for the taxonomic identification of the males. The proportion of individuals with a highly active esterase pattern, indicating resistance to organophosphorus insecticides, ranged from 0 to 0·75 in the field samples and was 1·00 in the Senegal strain. The following 17 loci were genetically analysed: α-Gpdh, Mdh-1, Mdh-2, Me-1, Me-2, Idh-1, Idh-2, 6Pgdh, G3pdh, Got-1, Got-2, Hk-1, Adk, Pgm, Aid, Tpi and Gpi. Comparisons made with published data for C. pipiens L. from the Old World and C. quinquefasciatus from the USA revealed similar levels of genetic variability in C. quinquefasciatus from Africa (H e = 0·06, P = 0·44, A = 1·47) and the USA, but considerably higher variability in C. pipiens (H e = 0·14, P = 0·52, A = 1·64). C. quinquefasciatus populations appeared genetically much more homogeneous than those of C. pipiens (average Nei's D = 0·004 within the former taxon, about ten times more within the latter) and the genetic divergence between African and USA samples of C. quinquefasciatus was very low (D = 0·003). Comparison between C. quinquefasciatus from Africa and C. pipiens showed that the former is genetically more related to C. pipiens s.s. from Italy (D = 0·145) than to C. pipiens form molestus Forskål from Italy (0·186) or Egypt (0·165). The average genetic distance found between C. quinquefasciatus and C. pipiens was 0·17, a value observed for some pairs of mosquito sibling species. Allele frequencies at some loci (Me-2 and Got-2) appeared to be remarkably differentiated between C. quinquefasciatus and C. pipiens, with fixed alternative allozymes at the Me-2 locus: 106 in C. quinquefasciatus, 100 and 108 in C. pipiens. These findings provide a basis for the investigation of gene flow between contiguous or overlapping populations of these two taxa in order to ascertain their relative taxonomic status.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barr, A. R. (1957). The distribution of Culex p. pipiens and C. p. quinquefasciatus in North America.—Am. J. trop. Med. Hyg. 6, 153165.CrossRefGoogle Scholar
Barr, A. R. (1982). The Culex pipiens complex.—pp. 551572 in Steiner, W. W. M., Tabachnick, W. J., Rai, K. S. & Narang, S. (Eds.) Recent developments in the genetics of insect disease vectors.—665 pp. Champaign, Illinois, Stipes.Google Scholar
Bekku, H. (1956). Studies on the Culex pipiens group of Japan. I. Comparative studies on the morphology of those obtained from various localities in the Far East [in Japanese].— Nagasaki Med. J. 31, 956966.Google Scholar
Belkin, J. N. (1962). The mosquitoes of the South Pacific (Diptera, Culicidae). Volumes I & II.— 1020 pp. Berkeley, Univ. Calif. Press. Google Scholar
Brewer, G. J. & Sing, C. F. (1970). An introduction to isozyme techniques.— 186 pp. New York & London, Academic Press.Google Scholar
Bullini, L. & Coluzzi, M. (1982). Evolutionary and taxonomic inferences of electrophoretic studies in mosquitoes.—pp. 465482 in Steiner, W. W. M., Tabachnick, W. J., Rai, K. S. & Narang, S. (Eds.). Recent developments in the genetics of insect disease vectors.—665 pp. Champaign, Illinois, Stipes.Google Scholar
Bullini, L., Coluzzi, M., Bianchi Bullini, A. P. & Renna, L. (1972). Stability of frequencies of phosphoglucomutase alleles in Culex pipiens breeding in ecologically different environments.—Ace. Naz. Lincei, Rend. Cl. Sc. Fis. Mat. e Nat., serie VIII 53, 608611.Google Scholar
Cheng, M. L. (1976). Genetic variability in the Culex pipiens complex (Diptera: Culicidae).— 237 pp. Ph.D. thesis, Univ. Texas.Google Scholar
Cheng, M. L., Hacker, C. S., Pryor, S. C, Ferrel, R. E. & Kitto, B. (1982). The ecological genetics of the Culex pipiens complex in North America—pp. 581627 in Steiner, W. W. M., Tabachnick, W. J., Rai, K. S. & Narang, S. (Eds.). Recent developments in the genetics of insect disease vectors.—665 pp. Champaign, Illinois, Stipes.Google Scholar
Curtis, C. F. & Pasteur, N. (1981). Organophosphate resistance in vector populations of the complex of Culex pipiens L. (Diptera: Culicidae).—Bull. ent. Res. 71, 153161.CrossRefGoogle Scholar
Curtis, C. F. & White|G. B. (1984). Plasmodium falciparum transmission in England: entomological and epidemiological data relative to cases in 1983.—J. trop. Med. Hyg. 87, 101114. Google ScholarPubMed
Dobrotworsky, N. V. (1967). The problem of the Culex pipiens complex in the South Pacific (including Australia).—Bull. Wld Hlth Org. 37, 251255.Google ScholarPubMed
Dobrotworsky, N. V. & Drummond, F. H. (1953). The Culex pipiens group in south-eastern Australia. II.—Proc. Linn. Soc. N. S. W. 78, 131146.Google Scholar
Donaldson, J. M. I. (1979). The Culex pipiens complex in South Africa.—,J ent. Soc. sth. Afr. 42, 3550.Google Scholar
Edwards, F. W. (1921). A revision of the mosquitos of the Palaearctic Region.—Bull. ent. Res. 12, 263351.CrossRefGoogle Scholar
Edwards, F. W. (1941). Mosquitoes of the Ethiopian Region. IIICulicine adults and pupae.— 499 pp. London, British Museum (Natural History).Google Scholar
Georghiou, G. P., Pasteur, N. & Hawley, M. K. (1980). Linkage relationships between organophosphate resistance and a highly active esterase-B in Culex quinquefasciatus from California.— J. econ. Ent. 73, 301305.CrossRefGoogle Scholar
Harris, H. (1966). Enzyme polymorphism in man.— Proc. R. Soc. Lond. (B) 164, 298310.Google ScholarPubMed
Harbach, R. E., Harrison, B. A. & Gad, A. M. (1984). Culex (Culex) molestus Forskål (Diptera: Culicidae): neotype designation, description, variation, and taxonomic status.—Proc. ent. Soc. Wash. 86, 521542.Google Scholar
Ishii, T. (1980). On the Culex pipiens group in Japan. Part III. A historical review of its research. 4. Review of the adult character (3) [in Japanese].— J. Sci. Coll. gen. Educ, Univ. Tokushima 13, 2662.Google Scholar
Jupp, P. G. (1978). Culex (Culex) pipiens pipiens Linnaeus and Culex (Culex) pipiens quinquefasciatus Say in South Africa: morphological and reproductive evidence in favour of their status as two species.—Mosq. Syst. 10, 461473.Google Scholar
Miles, S. J. (1974). Biochemical polymorphisms and evolutionary relationships in the Culex pipiens complex.—187 pp. Ph.D. thesis, Univ. Western Australia.Google Scholar
Miles, S. J. & Paterson, H. E. (1979). Protein variation and systematics in the Culex pipiens group of species.—Mosq. Syst. 11, 187202.Google Scholar
Muspratt, J. (1955). Research on South African Culicini (Diptera, Culicidae). III.— A check-list of the species and their distribution, with notes on taxonomy, bionomics and identification.—.J ent. Soc. sth. Afr. 18, 149207.Google Scholar
Nei, M. (1972). Genetic distance between populations.—Am. Nat. 106, 283292.CrossRefGoogle Scholar
Pasteur, N. (1977). Recherches de génétique chez Culex pipiens pipiens L. Polymorphisme enzymatique, autogénèse et resistance aux insecticides organophosphorés.—170 pp. Thèse de Doctorat, Université de Montpellier.Google Scholar
Pasteur, N., Iseki, A. & Georghiou, G. P. (1981a). Genetics and biochemical studies of the highly-active esterases A’ and B associated with organophosphate resistance in mosquitoes of the Culex pipiens complex.—Biochem. Genet. 19,909919.CrossRefGoogle Scholar
Pasteur, N., Sinègre, G. & Gabinaud, A. (1981b). Est-2 and Est-3 polymorphisms in Culex pipiens L. from southern France in relation to organophosphate resistance.—Biochem. Genet. 19, 499508.CrossRefGoogle Scholar
Poulik, M. D. (1957). Starch gel electrophoresis in a discontinuous system of buffers.—Nature, Lond. 180, 1477.CrossRefGoogle Scholar
Pryor, S. C, Cheng, M. L., Ferrel, R. E. & Hacker, C. S. (1980a). Biochemical genetics of the Culex pipiens complex. I. 6-Phosphogluconate dehydrogenase.—Comp. Biochem. Physiol. (B) 65, 663668.Google Scholar
Pryor, S. C, Cheng, M. L., Ferrel, R. E. & Hacker, C. S. (1980b). Biochemical genetics of the Culex pipiens complex. II. Hexokinase.—Comp. Biochem. Physiol. (B) 67, 705710.Google Scholar
Sasa, M., Kanda, T., Miura, A. & Yamaguti, N. (1963). Biological and taxonomical studies on some colonies of pallens and fatigans forms of the house mosquito, Culex pipiens s.l., from eastern and southern Japan.—Jap. J. exp. Med. 33, 131.Google ScholarPubMed
Sasa, M., Shirasaka, A. & Kurihara, T. (1966). Crossing experiments between fatigans, pallens and molestus colonies of the mosquito Culex pipiens s.l. from Japan and southern Asia, with special reference to hatchability of hybrid eggs.—Jap. J. exp. Med. 36, 187210.Google Scholar
Sasa, M., Shirasaka, A., Wada, Y. & Kanda, T. (1967). Comparative studies on some morphological and physiological characters of the Culex pipiens complex of Japan and southern Asia.—Jap. J. exp. Med. 37, 475504.Google ScholarPubMed
Selander, R. K., Smith, M. H., Yang, S. Y., Johnson, W. E. & Gentry, J. B. (1971). Biochemical polymorphism in the genus Peromyscus. I. Variation in the old field mouse (Peromyscus polionotus) .—Stud. Genet, no. 7103, 4990.Google Scholar
Sokal, R. R. & Rohlf, F. J. (1969). Biometry: the principles and practice of statistics in biological research.—859 pp. San Francisco, Freeman.Google Scholar
Sundararaman, S. (1949). Biometrical studies on intergradation in the genitalia of certain populations of Culex pipiens and Culex quinquefasciatus in the United States.—Am. J. Hyg. 50, 307314.Google ScholarPubMed
Tabachnick, W. J. & Powell, J. R. (1979). A world-wide survey of genetic variation in the yellow fever mosquito, Aedes aegypti. Genet. Res. 34, 215229.CrossRefGoogle ScholarPubMed
Tabachnick, W. J., Munstermann, L. E. & Powell, J. R. (1979). Genetic distinctness of sympatric forms of Aedes aegypti in East Africa.—Evolution 33, 287295.CrossRefGoogle ScholarPubMed
Tabachnick, W. J. & Powell, J. R. (1983). Genetic analysis of Culex pipiens populations in the Central Valley of California.—Ann. ent. Soc. Am. 76, 715720.CrossRefGoogle Scholar
Urbanelli, S., Cianchi, R., Petrarca, V., Sabatinelli, G., Coluzzi, M. & Bullini, L. (1981). Adaptation to the urban environment in the mosquito Culex pipiens (Diptera, Culicidae).—pp. 305316 in Moroni, A., Ravera, O. & Anelli, A. (Eds.). Ecologia.—603 pp. Parma, Zara.Google Scholar
Villani, F., White, G. B., Curtis, C. F. & Miles, S. J. (1983). Inheritance and activity of some esterases associated with organophosphate resistance in mosquitoes of the complex of Culex pipiens L. (Diptera: Culicidae).—Bull. ent. Res. 73, 153170.CrossRefGoogle Scholar
Villani, F., Urbanelli, S., Gad, A., Nudelman, S. & Bullini, L. (in press). Genetic variation of Culex pipiens from Egypt and Israel.—J. med. Ent. Google Scholar
Vinogradova, E. B. (1961). The biological isolation of subspecies of Culex pipiens L. (Diptera, Culicidae) [in Russian].—Ent. Obozr. 40, 6375 (English translation in Entomol. Rev. 40, 29-35).Google Scholar