Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T03:31:16.931Z Has data issue: false hasContentIssue false

Effects of the infection with Trypanosoma cruzi on the feeding and excretion/defecation patterns of Triatoma infestans

Published online by Cambridge University Press:  24 July 2019

N. Pereyra
Affiliation:
Laboratorio de Investigación en Triatominos (LIT), Centro de Referencia de Vectores (CeReVe), Coordinación de Vectores, Ministerio de Salud y Desarrollo Social de la Nación. Hospital Colonia-Pabellón Rawson calle s/n, Santa María de Punilla, Córdoba, Argentina
P.A. Lobbia*
Affiliation:
Laboratorio de Investigación en Triatominos (LIT), Centro de Referencia de Vectores (CeReVe), Coordinación de Vectores, Ministerio de Salud y Desarrollo Social de la Nación. Hospital Colonia-Pabellón Rawson calle s/n, Santa María de Punilla, Córdoba, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
G. Mougabure-Cueto
Affiliation:
Laboratorio de Investigación en Triatominos (LIT), Centro de Referencia de Vectores (CeReVe), Coordinación de Vectores, Ministerio de Salud y Desarrollo Social de la Nación. Hospital Colonia-Pabellón Rawson calle s/n, Santa María de Punilla, Córdoba, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
*
*Author for correspondence Phone: (54 3541) 481709 Fax: +54 9 3541 481709 E-mail: [email protected]

Abstract

Transmission of Trypanosma cruzi (Kinetoplastida: Trypanosomatidae) occurs when feces/urine of infected triatomines come into contact with mucous membranes or damaged skin, and this occurs mainly when insects defecate while feeding on the host. Thus, the vector competence of the triatomines is associated with their feeding and excretion/defecation behavior. This work studied for the first time the effect of T. cruzi infection on feeding and excretion/defecation patterns of Triatoma infestans (Hemiptera: Reduviidae). Uninfected and infected fifth-instar nymphs were fed ad libitum and their feeding behavior and defecations were registered during and after feeding. The feeding pattern did not show differences between the experimental groups. However, the infected nymphs began to defecate earlier, defecated in greater quantity and there was a greater proportion of defecating individuals compared to uninfected nymphs. These results show that T. cruzi affected the excretion/defecation pattern of T. infestans in a way that would increase the probability of contact between infective feces and the mammalian host.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beach, R., Kiilu, G. & Leeuwenburg, J. (1985) Modification of sand by biting behavior by Leishmania leads to increased parasite transmission. The American Journal of Tropical Medicine and Hygiene 34, 278282.Google Scholar
Biral dos Santos, C.B., Leite, G.R., Sessa, P.A. & Falqueto, A. (2006) Dynamics of feeding and defecation in Triatoma vitticeps (Stal, 1859) (Hemiptera: Reduviidae, Triatominae) and its potential in the transmission of Trypanosoma cruzi. Memórias do Instituto Oswaldo Cruz 101, 543546.Google Scholar
Botto-Mahan, C. (2009) Trypanosoma cruzi induces life-history trait changes in the wild kissing bug Mepraia spinolai: implications for parasite transmission. Vector-Borne and Zoonotic Diseases 9, 505510.Google Scholar
Botto-Mahan, C., Cattan, P.E. & Medel, R. (2006) Chagas disease parasite induces behavioural changes in the kissing bug Mepraia spinolai. Acta Tropica 98, 219223.Google Scholar
Botto-Mahan, C., Ossa, C.G. & Medel, R. (2008) Direct and indirect pathways of fitness-impact in a protozoan-infected kissing bug. Physiological Entomology 33, 2530.Google Scholar
Campos, R., Acuna-Retamar, M., Botto-Mahan, C., Ortiz, S., Cattan, P.E. & Solari, A. (2007) Susceptibility of Mepraia spinolai and Triatoma infestans to different Trypanosoma cruzi strains from naturally infected rodent hosts. Acta Tropica 104, 2529.Google Scholar
Crocco, L.B. & Catalá, S.S. (1996) Feeding and defecation patterns in Triatoma sordida. Memórias do Instituto Oswaldo Cruz 91, 409413.Google Scholar
Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M. & Robledo, C. (2008) W. InfoStat versión 2008. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Available online at http://www.infostat.com.ar.Google Scholar
Eichler, S. & Schaub, G.A. (2002) Development of symbionts in triatomine bugs and the effects of infections with trypanosomatids. Experimental Parasitology 100, 1727.Google Scholar
Elliot, S.L., Rodrigues, J.O., Lorenzo, M.G., Martins-Filho, O.A. & Guarneri, A.A. (2015) Trypanosoma cruzi, etiological agent of Chagas disease, is virulent to its triatomine vector Rhodnius prolixus in a temperature-dependent manner. PLoS Neglected Tropical Diseases 9, e0003646.Google Scholar
Fellet, M.R., Lorenzo, M.G., Elliot, S.L., Carrasco, D. & Guarneri, A.A. (2014) Effects of infection by Trypanosoma cruzi and Trypanosoma rangeli on the reproductive performance of the Vector Rhodnius prolixus. PLoS ONE 9, e105255.Google Scholar
Heil, M. (2016) Host manipulation by parasites: cases, patterns, and remaining doubts. Frontiers in Ecology and Evolution 4, 80.Google Scholar
Jenni, L., Molyneux, D.H. Livesey, J.L. & Galun, R. (1980) Feeding behavior of tsetse flies infected with salivarian trypanosomes. Nature 283, 383385.Google Scholar
Koella, J.C., Sørensen, F.L. & Anderson, R.A. (1998) The malaria parasite, Plasmodium falciparum, increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae. Proceedings of the Royal Society of London. B 265, 763768.Google Scholar
Lana, M.D., Pinto, A.D.S., Barnabé, C., Quesney, V., Noël, S. & Tibayrenc, M. (1998) Trypanosoma cruzi: compared vectorial transmissibility of three major clonal genotypes by Triatoma infestans. Experimental Parasitology 90, 2025.Google Scholar
Lent, H. & Wygodzinsky, P. (1979) Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas disease. Bulletin of the American Museum of Natural History 63, 236238.Google Scholar
Libersat, F., Delago, A. & Gal, R. (2009) Manipulation of host behavior by parasitic insects and insect parasites. Annual Review of Entomology 54, 189207.Google Scholar
Lobbia, P., Calcagno, J. & Mougabure-Cueto, G. (2018) Excretion/defecation patterns in Triatoma infestans populations that are, respectively, susceptible and resistant to deltamethrin. Medical and Veterinary Entomology 32, 311322.Google Scholar
Loza-Murguía, M. & Noireau, F. (2010) Vectorial capacity of Triatoma guasayana (Wygodzinsky & Abalos) (Hemiptera: Reduviidae) compared with two other species of epidemic importance. Neotropical Entomology 39, 799809.Google Scholar
Makumi, J.N. & Moloo, S.K. (1991) Trypanosoma vivax in Glossina palpalis gambiensis do not appear to affect feeding behaviour, longevity or reproductive performance of the vector. Medical and Veterinary Entomology 5, 3542.Google Scholar
Marliére, N.P., Latorre-Estivalis, J.M., Lorenzo, M.G., Carrasco, D., Alves-Silva, J., Rodrigues, J.O., de Lima Ferreira, L., de Melo Lara, L., Lowenberger, C. & Guarneri, A.A. (2015) Trypanosomes modify the behavior of their insect hosts: effects on locomotion and on the expression of a related gene. PLoS Neglected Tropical Diseases 9, e0003973.Google Scholar
Nattero, J., Crocco, L. & Rodríguez, C. (2002) Feeding and defaecation behaviour of Triatoma patagonica (Del Ponte, 1929) (Hemiptera: Reduviidae). Memórias do Instituto Oswaldo Cruz 97, 10631065.Google Scholar
Noireau, F., Diosque, P. & Jansen, A.M. (2009) Trypanosoma cruzi: adaptation to its vectors and its hosts. Veterinary Research 40, 123.Google Scholar
Oliveira, T., Carvalho-Costa, F., Gomes, T., Sarquis, O., Sposina, R. & Lima, R. (2010) Developmental and reproductive patterns of Triatoma brasiliensis infected with Trypanosoma cruzi under laboratory conditions. Memórias do Instituto Oswaldo Cruz 105, 10571060.Google Scholar
Poulin, R. (2010) Parasite manipulation of host behavior: an update and frequently asked questions. Advances in the Study of Behavior 41, 151186.Google Scholar
Reisenman, C., Gregory, T., Guerenstein, P. & Hildebrand, J. (2011) Feeding and defecation behavior of Triatoma rubida (Hemiptera: Reduviidae) under laboratory conditions and its potential role as vector of Chagas disease in Arizona, USA. The American Journal of Tropical Medicine and Hygiene 85, 648656.Google Scholar
Rodríguez, C., Carrizo, S. & Crocco, L.B. (2008) Comparison of feeding and defecation patterns between fifth instar nymphs of Triatoma patagonica (Del Ponte, 1929) and Triatoma infestans (Klug, 1934) under laboratory conditions. Revista da Sociedade Brasileira de Medicina Tropical 41, 330333.Google Scholar
Schaub, G.A. (2006) Parasitogenic alterations of vector behaviour. International Journal of Medical Microbiology 296, 3740.Google Scholar
Schaub, G.A. (2009) Interactions of trypanosomatids and triatomines. pp. 177242 in Simpson, S.J. & Casas, J. (Eds) Advances in Insect Physiology, vol. 37. Burlington, Academic Press.Google Scholar
Schofield, C.J. (1980) Nutritional status of domestic populations of Triatoma infestans. Transactions of the Royal Society of Tropical Medicine and Hygiene 74, 770778.Google Scholar
Schofield, C.J., Jannin, J. & Salvatella, R. (2006) The future of Chagas disease control. Trends in Parasitology 21, 583588.Google Scholar
Smallegange, R.C., van Gemert, G.J., van De Vegte-Bolmer, M., Gezan, S., Takken, W., Sauerwein, R.W. & Logan, J.G. (2013) Malaria infected mosquitoes express enhanced attraction to human odor. PLoS ONE 8, e63602.Google Scholar
StatSoft. Inc. (2011) STATISTICA (data analysis software system). Version 10. Available online at http://www.statsoft.com.Google Scholar
Takano-Lee, M. & Edman, J.D. (2002) Lack of manipulation of Rhodnius prolixus (Hemiptera: Reduviidae) vector competence by Trypanosoma cruzi. Journal of Medical Entomology 39, 4451.Google Scholar
Trumper, E.V. & Gorla, D. (1991) Density-dependent timing of defecation by Triatoma infestans. Transactions of the Royal Society Tropical Medicine and Hygiene 85, 800802.Google Scholar
Vallejo, G., Guhl, F. & Schaub, G. (2009) Triatominae-Trypanosoma cruzi/t. Rangeli: vector–parasite interactions. Acta Tropica 110, 137147.Google Scholar
Wood, S. (1951) Importance of feeding and defecation times of insect vectors in transmission of Chagas’ disease. Journal of Medical Entomology 44, 5254.Google Scholar
Zeledón, R., Alvarado, R. & Jirón, L. (1977) Observations on the feeding and defecation patterns of three triatomine species (Hemiptera: Reduviidae). Acta Tropica 34, 6577.Google Scholar
Zingales, B., Andrade, S.G., Briones, M.R.D.S., Campbell, D.A., Chiari, E., Fernandes, O., Guhl, F., Lages-Silva, E., Macedo, A.M., Machado, C.R., Miles, M.A., Romanha, A.J., Sturm, N.R., Tibayrenc, M. & Schijman, A.G. (2009) A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Memorias do Instituto Oswaldo Cruz 104, 10511054.Google Scholar