Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T16:44:57.141Z Has data issue: false hasContentIssue false

Effect of diet delivered various concentrations of double-stranded RNA in silencing a midgut and a non-midgut gene of Helicoverpa armigera

Published online by Cambridge University Press:  05 April 2013

R. Asokan*
Affiliation:
Division of Biotechnology, Indian Institute of Horticultural Research (IIHR), Hesaraghatta Lake (PO), Bengaluru – 560 089, India
G. Sharath Chandra*
Affiliation:
Division of Biotechnology, Indian Institute of Horticultural Research (IIHR), Hesaraghatta Lake (PO), Bengaluru – 560 089, India
M. Manamohan
Affiliation:
Division of Biotechnology, Indian Institute of Horticultural Research (IIHR), Hesaraghatta Lake (PO), Bengaluru – 560 089, India
N.K. Krishna Kumar
Affiliation:
National Bureau of Agriculturally Important Insects, H. A. Farm (PO), Bellary Road, Bengaluru – 560 024, India
*
*Authors for correspondence Phone: +91 80 28466420 Fax: +91 80 28466291 E-mail: [email protected]
Phone: +91 8123564905 E-mail: [email protected]

Abstract

Ribonucleic acid interference (RNAi) is a sequence-specific gene silencing mechanism induced by double-stranded RNA (dsRNA). Recently, RNAi has gained popularity as a reverse genetics tool owing to its tremendous potential in insect pest management, which includes Helicoverpa armigera. However, its efficiency is mainly governed by dsRNA concentration, frequency of application, target gene, etc. Therefore, to obtain a robust RNAi response in H. armigera, we evaluated various concentrations of dsRNA and its frequency of applications delivered through diet in silencing a midgut gene, chymotrypsin and a non-midgut gene, juvenile hormone acid methyl transferase (jhamt) of H. armigera. The extent of target gene silencing was determined by employing reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). Our study revealed four significant findings: (i) single application of dsRNA elicited a delayed and transient silencing, while multiple applications resulted in early and persistent silencing of the above genes; (ii) silencing of the non-midgut gene (jhamt) through diet delivered dsRNA revealed prevalence of systemic silencing probably due to communication of silencing signals in this pest; (iii) the extent of silencing of chymotrypsin was positively correlated with dsRNA concentration and was negatively correlated with jhamt; (iv) interestingly, over-expression (15–18 folds) of an upstream gene, farnesyl diphosphate synthase (fpps), in juvenile hormone (JH) biosynthetic pathway at higher concentrations of jhamt dsRNA was the plausible reason for lesser silencing of jhamt. This study provides an insight into RNAi response of target genes, which is essential for RNAi design and implementation as a pest management strategy.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asokan, R., Nagesha, S.N., Manamohan, M., Krishnakumar, N.K., Mahadevaswamy, H.M., Prakash, M.N., Sharath Chandra, G., Rebijith, K.B. & Ellango, R. (2012) Common siRNAs for various target genes of the fruit borer, Helicoverpa armigera Hubner (Lepidoptera: Noctuidae). Current Science 102, 16921699.Google Scholar
Baum, J.A., Bogaert, T., Clinton, W., Heck, G.R., Feldmann, P., Ilagan, O., Johnson, S., Plaetinck, G., Munyikwa, T., Pleau, M., Vaughn, T. & Roberts, J. (2007) Control of coleopteran insect pests through RNA interference. Nature Biotechnology 25, 13221326.CrossRefGoogle ScholarPubMed
Belles, X. (2010) Beyond Drosophila: RNAi in vivo and functional genomics in insects. Annual Review of Entomology 55, 111128.Google Scholar
Belles, X., Martin, D. & Piulachs, M.D. (2005) The mevalonate pathway and the synthesis of juvenile hormone in insects. Annual Review of Entomology 50, 181199.Google Scholar
Bourguet, D., Genissel, A. & Raymond, M. (2000) Insecticide resistance and dominance levels. Journal of Economic Entomology 93, 15881595.CrossRefGoogle ScholarPubMed
Brackney, D.E., Foy, B.D. & Olson, K.E. (2008) The effects of midgut serine proteases on dengue virus Type 2 infectivity of Aedes aegypti. American Journal of Tropical Medicine and Hygiene 79, 267274.Google Scholar
Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G.L., Vandesompele, J. & Wittwer, C.T. (2009) The MIQE guidelines–minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry 55, 611622.CrossRefGoogle ScholarPubMed
Caplen, N.J., Fleenor, J., Fire, A. & Morgan, R.A. (2000) dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene 252, 95105.CrossRefGoogle Scholar
Collinge, D., Gordon, K., Bhem, C. & Whyard, S. (2006) Stable transformation and RNAi in Helicoverpa armigera. pp. 1536–2422 in 7th International Workshop on the Molecular Biology and Genetics of the Lepidoptera.Google Scholar
Garbutt, J.S., Belles, X., Richards, E.H. & Reynolds, S.E. (2012) Persistence of double-stranded RNA in insect hemolymph as a potential determiner of RNA interference success: evidence from Manduca sexta and Blattella germanica. Journal of Insect Physiology, http://dx.doi.org/10.1016/j.jinsphys.2012.05.013.Google Scholar
Gordon, K.H.J. & Waterhouse, P.M. (2007) RNAi for insect-proof plants. Nature Biotechnology 25, 12311232.Google Scholar
Griebler, M., Westerlund, S.A., Hoffmann, K.H. & Meyering-Vos, M. (2008) RNA interference with the allatoregulating neuropeptide genes from the fall armyworm, Spodoptera frugiperda and its effects on the JH titer in the hemolymph. Journal of Insect Physiolology 54, 9971007.CrossRefGoogle ScholarPubMed
Gupta, G.P., Birah, A. & Rani, S. (2004) Development of artificial diet for mass rearing of American bollworm, Helicoverpa armigera. Indian Journal of Agricultural Sciences 74, 548551.Google Scholar
Herbert, M., Coppieters, N., Lasham, A., Cao, H. & Reid, G. (2011) The importance of RT-qPCR primer design for the detection of siRNA-mediated mRNA silencing. BMC Research Notes 4, 148.Google Scholar
Hirai, M., Terenius, O. & Faye, I. (2004) Baculovirus and dsRNA induce hemolin, but no antibacterial activity, in Antheraea pernyi. Insect Molecular Biology 13, 399405.Google Scholar
Hong, J., Qian, Z., Shen, S., Min, T., Tan, C., Xu, J.F., Zhao, Y. & Huang, W. (2005) High doses of siRNAs induce eri-1 and adar-1 gene expression and reduce the efficiency of RNA interference in the mouse. Biochemical Journal 390, 675679.CrossRefGoogle ScholarPubMed
Huvenne, H. & Smagghe, G. (2010) Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. Journal of Insect Physiology 56, 27235.CrossRefGoogle ScholarPubMed
Li, X., Zhang, M. & Zhang, H. (2011) RNA interference of four genes in adult Bactrocera dorsalis by feeding their dsRNAs. PLoS ONE 6, e17788.Google Scholar
Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Shinozaki, K.Y. & Shinozaki, K. (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low- temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10, 13911406.Google Scholar
Liu, S., Ding, Z., Zhang, C., Yang, B. & Liu, Z. (2010) Gene knockdown by intro-thoracic injection of dsRNA in the brown planthopper, Nilaparvata lugens. Insect Biochemistry Molecular Biology 40, 666671.CrossRefGoogle ScholarPubMed
Livak, K.L. & Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25, 402408.CrossRefGoogle Scholar
Mao, Y.B., Tao, X.Y., Xue, X.Y., Wang, L.J. & Chen, X.Y. (2011) Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Research 20, 665673.CrossRefGoogle ScholarPubMed
Minakuchi, C., Namiki, T., Yoshiyama, M. & Shinoda, T. (2008) RNAi-mediated knockdown of juvenile hormone acid O-methyl transferase gene causes precocious metamorphosis in the red flour beetle Tribolium castaneum. FEBS Journal 275, 29192931.Google Scholar
Naito, Y., Yamuda, T., Mastumiya, T., Kumiko, U.T., Saigo, K. & Morishita, S. (2005) dsCheck: highly sensitive off-target search software for double-stranded RNA-mediated RNA interference. Nucleic Acids Research 33, W589W591.CrossRefGoogle ScholarPubMed
Nakamura, T., Furuhashi, M., Li, P., Cao, H., Tuncman, G., Sonenberg, N., Gorgun, C.Z. & Hotamisligil, G.K.S. (2010) Double-stranded RNA-dependent protein kinase links pathogen sensing with stress and metabolic homeostasis. Cell 140, 338348.Google Scholar
Price, D.R.G. & Gatehouse, J.A. (2008) RNAi-mediated crop protection against insects. Trends in Biotechnology 26, 393400.Google Scholar
Sambrook, J. & Russell, D.W. (2001) Molecular cloning: A laboratory Manual, Vol. 1. 3rd edn. Cold Spring Harbor Laboratory Press, New York.Google Scholar
Shinoda, T. & Itoyama, K. (2003) Juvenile hormone acid methyltransferase: a key regulatory enzyme for insect metamorphosis. Proceedings of the National Academy of Sciences, USA 100, 1198611991.CrossRefGoogle ScholarPubMed
Sivakumar, S., Rajagopal, R., Venkatesh, G.R., Srivastava, A. & Bhatmagar, R.K. (2007) Knockdown of aminopeptidase-N from Helicoverapa armigera larvae and in transfected Sf21 cells by RNA interference reveals its functional interaction with Bacillus thuringiensis insecticidal protein Cry1Ac. Journal of Biological Chemistry 282, 73127319.Google Scholar
Sledz, C.A., Holko, M., De-Veer, M.J., Silverman, R.H. & Williams, B.R.G. (2003) Activation of the interferon system by short-interfering RNAs. Nature Cell Biology 5, 834839.Google Scholar
Terenius, O., Papanicolaou, A., Garbutt, J.S., Eleftherianos, I., Huvenne, H., Kanginakudru, S., Albrechtsen, M., An, C., Aymeric, J.L., Barthel, A., Bebas, P., Bitram, K., Bravo, A., Chevalier, F.C., Collinge, D.P., Crava, C.M., Maagd, R.A., Duvic, B., Erlandson, M., Faye, I., Felfoldi, G., Fujiwara, H., Futahashi, R., Gandhe, A.S., Gatehouse, H.S., Gatehouse, L.N., Giebultowicz, J.M., Gomez, I., Grimmelikhuijzen, C.J.P., Groot, A.T., Hauser, F., Heckel, D.G., Hededus, D.D., Hrycaj, S., Huang, L., Hull, J.J., Latrou, K., Iga, M., Kanost, M.R., Kotwica, J., Li, C., Li, J., Liu, J., Lundmark, M., Matsumoto, S., Meyering-Vos, M., Millichap, P.J., Monteiro, A., Mrinal, N., Niimi, T., Nowara, D., Ohnishi, A., Oostra, V., Ozaki, K., Papakonstantionou, M., Popadic, A., Rajam, M.V., Saenko, S., Simpson, R.M., Soberon, M., Strand, M.R., Tomita, S., Toprak, U., Wang, P., Wee, C.W., Whyard, S., Zhang, W., Nagaraju, J., Ffrench-Constant, R.H., Herrero, S., Gordon, K., Swevers, L. & Smagghe, G. (2011) RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. Journal of Insect Physiology 57, 231245.Google Scholar
Terra, W.R. & Ferreira, C. (1994) Insect digestive enzymes: properties, compartmentalization and function. Comparative Biochemistry and Physiology 109, 162.Google Scholar
Tomoyasu, Y., Miller, S.C., Tomita, S., Schoppmeier, M., Grossmann, D. & Bucher, G. (2008) Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biology 9: R10.Google Scholar
Turner, C.T., Davy, M.W., Macdiarmid, R.M., Plummer, K.M., Birch, N.P. & Newcomb, R.D. (2006) RNA interference in the light brown apple moth, Epiphyyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Molecular Biology 15, 383391.Google Scholar
Walshe, D.P., Lehane, S.M., Lehane, M.J. & Haines, L.R. (2009) Prolonged gene knockdown in the tsetse fly Glossina by feeding double stranded RNA. Insect Molecular Biology 18, 1119.Google Scholar
Whyard, S., Singh, A.D. & Wong, S. (2009) Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochemistry and Molecular Biology 39, 824832.Google Scholar
Zhan, Q., Zheng, S., Feng, Q. & Liu, L. (2011) A midgut-specific chymotrypsin cDNA (slctlp1) from Spodoptera litura: cloning, characterization, localization and expression analysis. Archives of Insect Biochemistry and Physiology 76, 130143.Google Scholar
Zhang, C., Zhou, D., Zheng, S., Liu, L., Tao, S., Yang, L., Hu, S. & Feng, Q. (2010) A chymotrypsin-like serine protease cDNA involved in food digestion in the common cutworm, Spodoptera litura: cloning, characterization, developmental and induced expression patterns, and localization. Journal of Insect Physiology 56, 788799.Google Scholar