Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T15:33:14.562Z Has data issue: false hasContentIssue false

Effect of decline of insecticide residues on selection for insecticide resistance in Myzus persicae (Sulzer) (Hemiptera: Aphididae)

Published online by Cambridge University Press:  10 July 2009

R. H. Ffrench-Constant
Affiliation:
AFRC Institute of Arable Crops Research, Rothamsted Experimental Station, Harpenden, Herts., UK
S. J. Clark
Affiliation:
AFRC Institute of Arable Crops Research, Rothamsted Experimental Station, Harpenden, Herts., UK
A. L. Devonshire*
Affiliation:
AFRC Institute of Arable Crops Research, Rothamsted Experimental Station, Harpenden, Herts., UK
*
To whom correspondence should be addressed.

Abstract

Residues of pirimicarb or deltamethrin plus heptenophos on potatoes in field cages in southern England reduced artificial infestations of susceptible and insecticide-resistant strains of Myzus persicae (Sulzer) introduced up to 14 days after treatment. Deltamethrin plus heptenophos gave better control than pirimicarb, particularly of nymphs, but also selected more strongly for very resistant (R2) aphids. Susceptible (S) aphids survived the treatment with deltamethrin plus heptenophos better than moderately resistant (R1) aphids, probably due to a different or more pronounced behavioural response to the pyrethroid. However, the combination of the greater persistence of deltamethrin plus heptenophos and the high resistance of M. persicae to the pyrethroid led to more prolonged selection for R2 aphids, which is sometimes associated with a resurgence in aphid numbers.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blackman, R. L. (1971). Variation in the photoperiodic response within natural populations of Myzus persicae (SuIz.).—Bull. ent. Res. 60, 533546.CrossRefGoogle Scholar
Bret, B. L. & Ross, M. H. (1985). Insecticide-induced dispersal in the German cockroach, Blattella germanica (L.) (Orthoptera: Blattellidae).—J. econ. Ent. 78, 12931298.CrossRefGoogle ScholarPubMed
Busvine, J. R. (1964). The significance of DDT-irritability tests on mosquitos.—Bull. Wld Hlth Org. 31, 645656.Google ScholarPubMed
Devonshire, A. L. & Moores, G. D. (1982). A carboxylesterase with broad substrate specificity causes organophosphorus, carbamate and pyrethroid resistance in peach-potato aphids (Myzus persicae).—Pestic. Biochem. & Physiol. 18, 235246.CrossRefGoogle Scholar
Devonshire, A. L., Moores, G. D. & Ffrench-Constant, R. H. (1986). Detection of insecticide resistance by immunological estimation of carboxylesterase activity in Myzus persicae (Sulzer) and cross reaction of the antiserum with Phorodon humuli (Schrank) (Hemiptera: Aphididae).—Bull. ent. Res. 76, 97107.CrossRefGoogle Scholar
Ffrench-Constant, R. H. & Devonshire, A. L. (1986). The effect of aphid immigration on the rate of selection of insecticide resistance in Myzus persicae by different classes of insecticides.— pp. 115–125 in Aspects of Applied Biology 13, Crop protection of sugar beet and crop protection and quality of potatoes, 1986.—519 pp. Wellesbourne, Warwick, Assoc. Applied Biol.Google Scholar
Ffrench-Constant, R. H., Devonshire, A. L. & Clark, S. J. (1987). Differential rate of selection for resistance by carbamate, organophosphorus and combined pyrethroid and organophosphorus insecticides in Myzus persicae (Sulzer) (Hemiptera: Aphididae).—Bull. ent. Res. 77, 227238.CrossRefGoogle Scholar
Ffrench-Constant, R. H., Harrington, R. & Devonshire, A. L. (1988). Effect of repeated application of insecticides to potatoes on numbers of Myzus persicae (Sulzer) (Hemiptera: Aphididae) and on the frequencies of insecticide-resistant variants.—Crop Prot. 7, 5561.CrossRefGoogle Scholar
Foster, G. N. (1986). Effects of two insecticidal spray programmes on aphids and the spread of potato leafroll virus in Tests of agrochemicals and cultivars, 7.—Ann. appl. Biol. 108 (suppl.), 2425.CrossRefGoogle Scholar
Gordon, P. L. & McEwen, F. L. (1984). Insecticide-stimulated reproduction of Myzus persicae, the green peach aphid (Homoptera: Aphididae).—Can. Ent. 116, 783784.CrossRefGoogle Scholar
Jackson, A. E. M. & Wilkins, R. M. (1985). The effect of sub-lethal dosages of the synthetic pyrethroid fenvalerate on the reproductive rate of the aphid Myzus persicae.Pestic. Sci. 16, 364368.CrossRefGoogle Scholar
McKenzie, J. A. & Whitten, M. J. (1982). Selection for insecticide resistance in the Australian sheep blowfly, Lucilia cuprina.Experientia 38, 8485.CrossRefGoogle ScholarPubMed
McKinlay, R. G. & Drübbisch, B. (1986). Effect of a deltamethrin + heptenophos mixture on reproduction of the peach-potato aphid, Myzus persicae.—pp. 1017–1020 in 1986 British Crop Protection Conference. Pests and Diseases. Proceedings of a conference held at Brighton Metropole, England, 11 17–20, 1986, Vol. 3.—pp. 8871255. Thornton Heath, Surrey, Br. Crop Prot. Coun.Google Scholar
Lowery, D. T. & Sears, M. K. (1986 a). Stimulation of reproduction of the green peach aphid (Homoptera: Aphididae) by azinphosmethyl applied to potatoes.—J. econ. Ent. 79, 15301533.CrossRefGoogle Scholar
Lowery, D. T. & Sears, M. K. (1986 b). Effect of exposure to the insecticide azinphosmethyl on reproduction of green peach aphid (Homoptera: Aphididae).—J. econ. Ent. 79, 15341538.CrossRefGoogle Scholar
Pluthero, F. G. & Threlkeld, S. F. H. (1984). Mutations in Drosophila melanogaster affecting physiological and behavioural responses to malathion.—Can. Ent. 116, 411418.CrossRefGoogle Scholar
Sawicki, R. M. & Rice, A. D. (1978). Response of susceptible and resistant peach-potato aphids Myzus persicae (Sulz.) to insecticides in leaf-dip bioassays.—Pestic. Sci. 9, 513516.CrossRefGoogle Scholar