Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T17:19:47.528Z Has data issue: false hasContentIssue false

Domesticity of Lutzomyia whitmani (Diptera: Psychodidae) populations: field experiments indicate behavioural differences

Published online by Cambridge University Press:  02 March 2010

D.H. Campbell-Lendrum*
Affiliation:
Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
S.P. Brandão-Filho
Affiliation:
Centro de Pesquisas Aggeu Magalhães/FIOCRUZ, Recife, PE, Brazil
M.C. Pinto
Affiliation:
Universidade Federal de Paraná, Curitiba, PR, Brazil
A. Vexenat
Affiliation:
Universidade de Brasilia, Brasilia, DF, Brazil
P.D. Ready
Affiliation:
Molecular Systematics Laboratory, Department of Entomology, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
C.R. Davies
Affiliation:
Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
*
*Fax: 0171 636 8739 E-mail: [email protected]

Abstract

The sandfly Lutzomyia whitmani (Antunes & Coutinho) is an important vector for cutaneous leishmaniasis throughout much of Brazil, and has recently been shown to consist of more than one mitochondrial lineage. It has frequently been asserted that the degree of adaptation of L. whitmani to human environments varies across its range. As a standardized test of indoor feeding for three geographically distant populations of L. whitmani, catches inside experimental chicken sheds of varying degrees of wall closure (0%, 33%, 67% and 98%) were compared. Each increment in shed closure reduced catches of females (relative to the most open shed) by a similar degree for each population: geometric mean catches dropped by 11–40% with 33% closure, by 41–62%with 67% closure, and by 69–100% with 98% closure. Geometric mean catches of males from the two more northerly populations also decreased with increasing shed closure, by 18% and 22% for 33% closure, 58% and 69% for 67% closure, 91% and 93%for 98% closure. Males from the most southerly population showed significantly different behaviour, with 33% closure causing a 54% increase in geometric mean catch, 67% closure causing a 6% increase, and 98% closure causing a 32% reduction. For this southerly population, sex ratios became more male biased with increasing density in more closed sheds, suggesting aggregation driven by intra-specific communication. Lutzomyia intermedia (Lutz & Neiva) was relatively more likely than L. whitmani to approach baits in the three more closed sheds, rather than the most open shed, offering a behavioural explanation for observed differences in indoor biting rates between the species.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, B., Usma, C., Cadena, H., Quesada, B.L., Solarte, Y., Roa, W. & Travi, B.L. (1995) Evaluation of deltamethrin-impregnated bednets and curtains against phlebotomine sandflies in Valle del Cauca, Colombia. Medical and Veterinary Entomology 9, 279283.CrossRefGoogle ScholarPubMed
Brandão-Filho, S.P., Carvalho, F.G., Brito, M.E.F., Almeida, F.A. & Nascimento, L.A. (1994) American cutaneous leishmaniasis in Pernambuco, Brazil: eco-epidemiological aspects in ‘Zona da Mata’ region. Memórias do Instituto Oswaldo Cruz 89, 445449.CrossRefGoogle ScholarPubMed
Bryan, J.H., Petrarca, V., Di Deco, M.A. & Coluzzi, M. (1987) Adult behaviour of members of the Anopheles gambiae complex in the Gambia with special reference to An. melas and its chromosomal variants. Parassitologia 29, 221249.Google Scholar
Campbell-Lendrum, D.H., Mara Pinto, M.C., Brandão-Filho, S.P., de Souza, A.A., Ready, P.D. & Davies, C.R. (1999) Experimental comparison of anthropophily between geographically dispersed populations of Lutzomyia whitmani. Medical and Veterinary Entomology 13, 299309.CrossRefGoogle ScholarPubMed
Campbell-Lendrum, D.H., Pinto, M.C. & Davies, C.R. (1999) Is Lutzomyia intermedia (Lutz & Neiva, 1912) more endophagic than Lutzomyia whitmani (Antunes & Coutinho, 1939) because it is more attracted to light? Memórias do Instituto Oswaldo Cruz 94, 2122.CrossRefGoogle ScholarPubMed
Coluzzi, M., Sabatini, A., Petrarca, V. & DiDeco, M.A. (1979) Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Transactions of the Royal Society of Tropical Medicine and Hygiene 73, 483497.CrossRefGoogle ScholarPubMed
Clements, A.N. (1999) The biology of mosquitoes Volume 2. Sensory reception and behaviour. Wallingford, CAB International.CrossRefGoogle Scholar
Crawley, M.J. (1993) GLIM for ecologists. Oxford, Blackwell Scientific Publications.Google Scholar
Curtis, C.F. & Isherwood, R.J. (1985) Methods for studying genetic variation in mosquito behaviour. pp. 311317 in Frank, J.H., Lounibos, L.P. & Ray, J.R. (Eds) Ecology of mosquitoes. Proceedings of a workshop. Ann Arbor, American Entomological Institute.Google Scholar
Curtis, C.F., Myamba, J. & Wilkes, T.J. (1996) Comparison of different insecticides and fabrics for anti-mosquito bednets and curtains. Medical and Veterinary Entomology 10, 111.CrossRefGoogle ScholarPubMed
Davies, C.R., Llanos-Cuentas, E.A., Campos, P., Monge, J., Villaseca, P. & Dye, C. (1997) Cutaneous leishmaniasis in the Peruvian Andes: risk factors identified from a village cohort study. American Journal of Tropical Medicine and Hygiene 56, 8595.CrossRefGoogle ScholarPubMed
Deane, L.M. & Grimaldi, G. (1985) Leishmaniasis in Brazil. pp. 247281 in Chang, K.-P. & Bray, R.S. (Eds) Leishmaniasis. Amsterdam, Elsevier.Google Scholar
Dye, C., Davies, C.R. & Lainson, R. (1991) Communication among phlebotomine sandflies: a field study of domesticated Lutzomyia longipalpis populations in Amazonian Brazil. Animal Behaviour 42, 183192.CrossRefGoogle Scholar
Falqueto, A. (1995) Especificidade alimentar de flebotomíneos em duas áreas endêmicas de leishmaniose tegumentar no Estado do Espírito Santo. Unpublished PhD thesis, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro.Google Scholar
Gomes, A.C., Santos, J.L.F. & Galati, E.A.B. (1986) Ecological aspects of cutaneous leishmaniasis 4. Observations on the endophilic behavior of the sandfly and the vectorial role of Psychodopygus intermedius in the Ribeira valley region of the São Paulo state, Brazil. Revista de Saúde Pública 20, 280287.CrossRefGoogle Scholar
Haffer, J. (1987) Quaternary history of Tropical America. pp. 18 in Whitmore, T.C. & Prance, G.T. (Eds) Biogeography and Quaternary history in tropical America. Oxford, Clarendon Press.Google Scholar
Ishikawa, E.A.Y., Ready, P.D., de Souza, A.A., Day, J.C., Rangel, E.F., Davies, C.R. & Shaw, J.J. (1999) A mitochondrial DNA phylogeny indicates close relationships between populations of Lutzomyia whitmani (Diptera: Psychodidae, Phlebotominae) from the rain-forest regions of Amazônia and Northeast Brazil. Memórias do Instituto Oswaldo Cruz 94, 339345.CrossRefGoogle ScholarPubMed
Kelly, D.W. & Dye., C. (1997) Pheromones, kairomones and the aggregation dynamics of the sandfly Lutzomyia longipalpis. Animal Behaviour 53, 721731.CrossRefGoogle Scholar
Lainson, R. (1988) Ecological interactions in the transmission of the leishmaniases. Philosophical Transactions of the Royal Society of London series 321, 389404.Google ScholarPubMed
Marcondes, C.B. (1996) A redescription of Lutzomyia (Nyssomyia) intermedia (Lutz & Neiva, 1912), and resurrection of L. neivai (Pinto, 1926) (Diptera, Psychodidae, Phlebotominae). Memórias do Instituto Oswaldo Cruz 91, 457462.CrossRefGoogle Scholar
Marcondes, C.B., Lozovei, A.L. & Vilela, J.H. (1998) Distribuição geográfica de flebotomíneos do complexo Lutzomyia intermedia (Lutz & Neiva, 1912). Revista da Sociedade Brasileira de Medicina Tropical 31, 5158.CrossRefGoogle ScholarPubMed
Molineaux, L., Shidrawi, G.R., Clarke, J.L., Bouzlaguet, J.R. & Ashkar, T.S. (1979) Assessment of insecticidal impact on the malaria mosquito's vectorial capacity, from data on the man-biting rate and age-composition. Bulletin of the World Health Organization 57, 265274.Google ScholarPubMed
Morton, I.E. & Ward, R.D. (1989) Laboratory response of female Lutzomyia longipalpis sandflies to a host and male pheromone source over distance. Medical and Veterinary Entomology 3, 219223.CrossRefGoogle ScholarPubMed
Port, G.R. & Boreham, P.F.L. (1982) The effect of bed nets on feeding by Anopheles gambiae Giles (Diptera: Culicidae). Bulletin of Entomological Research 72, 483488.CrossRefGoogle Scholar
Quinnell, R.J. & Dye, C. (1994) An experimental study of the peridomestic distribution of Lutzomyia longipalpis (Diptera: Psychodidae). Bulletin of Entomological Research 84, 379382.CrossRefGoogle Scholar
Quinnell, R.J. & Dye, C. (1994) Correlates of the peridomestic abundance of Lutzomyia longipalpis (Diptera: Psychodidae). Medical and Veterinary Entomology 6, 195200.CrossRefGoogle Scholar
Rangel, E.F., Lainson, R. & de Souza, A.A. (1990) Lutzomyia (Nyssomyia) whitmani (Antunes and Coutinho, 1939) (Diptera, Psychodidae, Phlebotominae), a vector of cutaneous leishmaniasis in Brazil: is it a complex of cryptic species? Memórias do Instituto Oswaldo Cruz 85 (Suppl. 1), 122.Google Scholar
Rangel, E.F., Lainson, R., de Souza, A.A., Ready, P. & Azevedo, A.C.R. (1996) Variation between geographical populations of Lutzomyia (Nyssomyia) whitmani (Antunes and Countinho, 1939) sensu lato (Diptera: Psychodidae: Phlebotominae) in Brazil. Memórias do Instituto Oswaldo Cruz 91, 4350.CrossRefGoogle Scholar
Ready, P.D., Day, J.C., de Souza, A.A., Rangel, E.F. & Davies, C.R. (1997) Mitochondrial DNA characterization of populations of Lutzomyia whitmani (Diptera: Psychodidae) incriminated in the peri-domestic and silvatic transmission of Leishmania species in Brazil. Bulletin of Entomological Research 87, 187195.CrossRefGoogle Scholar
Ready, P.D., de Souza, A.A., Macario Rebelo, J.M., Day, J.C., Silveira, F.T., Campbell-Lendrum, D., Davies, C.R. & Costa, J.M.L. (1998) Phylogenetic species and domesticity of Lutzomyia whitmani at the southeast boundary of Amazonian Brazil. Transactions of the Royal Society of Tropical Medicine and Hygiene 92, 159160.CrossRefGoogle ScholarPubMed
Snow, W.F. (1987) Studies of house-entering habits of mosquitoes in The Gambia, West Africa: experiments with prefabricated huts with varied wall apertures. Medical and Veterinary Entomology 1, 921.CrossRefGoogle ScholarPubMed
Sokal, R.R. & Rohlf, F.J. (1995) Biometry. New York, W.H. Freeman and Company.Google Scholar
Taniguchi, H.H., Tolezano, J.E., Corrêa, F.M.de.A., Moraes, R.H.P., Veiga, R.M. de O. & Marassá, A.M. (1991) Epidemiologia da Leishmaniose Tegumentar Americana no Estado de São Paulo 1. Composição da fauna flebotomínica no município de São Roque, Região de Sorocaba. Revista do Instituto Adolfo Lutz 51, 2330.Google Scholar
Teodoro, U., La Salvia Filho, V., Lima, E.M., Spinosa, S.P., Barbosa, O.C., Ferreira, M.E.M.C. & Lonardoni, M.V.C. (1993) Observações sobre o comportamento de flebotomíneos em ecótopos florestais e extraflorestais, em área endêmica de leishmaniose tegumentar americana, no norte do Estado do Paraná, Sul do Brasil. Revista de Saúde Pública 27, 242249.CrossRefGoogle Scholar
Walsh, J.E., Molyneux, D.H. & Birley, M.H. (1993) Deforestation: effects on vector-borne disease. Parasitology 106, Suppl. S 5575.CrossRefGoogle ScholarPubMed
Young, D.G. & Duncan, M.A. (1994) Guide to the identification and geographic distribution of Lutzomyia sandflies in Mexico, the West Indies, Central and South America (Diptera: Psychodidae). Memoirs of the American Entomology Institute 54, 1881.Google Scholar