Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T15:42:03.508Z Has data issue: false hasContentIssue false

Diet breadth and its relationship with genetic diversity and differentiation: the case of southern beech aphids (Hemiptera: Aphididae)

Published online by Cambridge University Press:  09 March 2007

C. Gaete-Eastman
Affiliation:
Centro de Investigación en Biotecnología Silvoagrícola, Instituto de Biología Vegetal y Biotecnología, Universidad de Talca, Casilla 747, Talca, Chile
C.C. Figueroa
Affiliation:
Instituto de Ecología y Evolución, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
R. Olivares-Donoso
Affiliation:
Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
H.M. Niemeyer
Affiliation:
Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
C.C. Ramírez*
Affiliation:
Centro de Investigación en Biotecnología Silvoagrícola, Instituto de Biología Vegetal y Biotecnología, Universidad de Talca, Casilla 747, Talca, Chile
*
*Fax: 56 71 200 276 E-mail: [email protected]

Abstract

Herbivorous insect species with narrow diet breadth are expected to be more prone to genetic differentiation than insect species with a wider diet breadth. However, a generalist can behave as a local specialist if a single host-plant species is locally available, while a specialist can eventually behave as a generalist if its preferred host is not available. These problems can be addressed by comparing closely related species differing in diet breadth with overlapping distributions of insect and host populations. In this work, diet breadth, genetic diversity and population differentiation of congeneric aphid species from southern beech forests in Chile were compared. While at the species level no major differences in genetic diversity were found, a general trend towards higher genetic diversity as diet breadth increased was apparent. The aphid species with wider diet breadth, Neuquenaphis edwardsi (Laing), showed the highest genetic diversity, while the specialist Neuquenaphis staryi Quednau & Remaudière showed the lowest. These differences were less distinct when the comparisons were made in the same locality and over the same host. Comparison of allopatric populations indicates that genetic differentiation was higher for the specialists, Neuquenaphis similis Hille Ris Lambers and N. staryi, than for the generalist N. edwardsi. Over the same host at different locations, genetic differentiation among populations of N. edwardsi was higher than among populations of N. similis. The results support the assumption that specialists should show more pronounced genetic structuring than generalists, although the geographical distribution of host plants may be playing an important role.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Aboodi, A. & Ffrench-Constant, R.H. (1995) RAPD–PCR confirms absence of genetic variation between insecticide resistant variants of the green peach aphid, Myzus persicae (Homoptera: Aphididae). Great Lakes Entomologist 28, 127133.Google Scholar
Bernays, E.A. (1991) Evolution of insect morphology in relation to plants. Philosophical Transactions of the Royal Society of London B 333, 257264.Google Scholar
Bernays, E.A. & Chapman, R.F. (1994) Host-plant selection by phytophagous insects. New York, Chapman & Hall.CrossRefGoogle Scholar
Bernays, E.A. & Graham, M. (1988) On the evolution of host specificity in phytophagous arthropods. Ecology 69, 886892.CrossRefGoogle Scholar
Bernays, E.A., Funk, D.J. & Moran, N.A. (2000) Intraspecific differences in olfactory sensilla in relation to diet breadth in Uroleucon ambrosiae (Homoptera: Aphididae). Journal of Morphology 245, 99109.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Black, W.C., DuTeau, N.M., Puterka, G.J., Nechols, J.R. & Pettorini, J.M. (1992) Use of the random amplified polymorphic DNA polymerase chain reaction (RAPD–PCR) to detect DNA polymorphisms in aphids (Homoptera: Aphididae). Bulletin of Entomological Research 82, 151159.CrossRefGoogle Scholar
Blackman, R.L. & Eastop, V.F. (1994) Aphids on the world's trees. An identification and information guide. Wallingford, Oxon, CAB International.CrossRefGoogle Scholar
Blackman, R.L. & Eastop, V.F. (2000) Aphids on the world's crops. An Identification and Information guide. London, John Wiley & Sons Publications.Google Scholar
Bowers, M.D., Stamp, N.E. & Collinge, S.K. (1992) Early stage of host range expansion by a specialist herbivore, Euphydras phaeton (Nymphalidae). Ecology 73 526536.CrossRefGoogle Scholar
Bustamante, R.O. & Castor, C. (1998) The decline of an endangered ecosystem: the ruil (Nothofagus alessandrii) forest in Central Chile. Biodiversity and Conservation 7, 16071626.CrossRefGoogle Scholar
Carroll, S.P. & Boyd, C. (1992) Host race radiation in the soapberry bug: natural history with the history. Evolution 46, 10521069.CrossRefGoogle ScholarPubMed
De Barro, P.J., Sherratt, T.N., David, O. & Maclean, N. (1995a) An investigation of the differential performance of clones of the aphid Sitobion avenae on two host species. Oecologia 104, 379385.CrossRefGoogle ScholarPubMed
De Barro, P.J., Sherratt, T.N., Carvalho, G.R., Nicol, D., Iyengar, A. & Maclean, N. (1995b) Geographic and microgeographic genetic differentiation in two aphid species over southern England using the multilocus (GATA) 4 probe. Molecular Ecology 4, 375382.CrossRefGoogle Scholar
Dixon, A.F.G. (1998) Aphid ecology. 2nd edn. London, Chapman & Hall.Google Scholar
Dobler, S., & Farrell, B.D. (1999) Host use evolution in Chrysochus milkweed beetles: evidence from behavior, population genetics and phylogeny. Molecular Ecology 8, 12971307.CrossRefGoogle ScholarPubMed
Donoso, C. (1993) Bosques templados de Chile y Argentina. Variación, estructura y dinámica. Ecología Forestal. Santiago, Editorial Universitaria.Google Scholar
Figueroa, C.C., Simon, J.C., Le Gallic, J.F. & Niemeyer, H.M. (1999) Molecular markers to differentiate two morphologically-close species of the genus Sitobion (Hemiptera: Aphidoidea). Entomologia Experimentalis et Applicata 92, 217225.CrossRefGoogle Scholar
Figueroa, C.C., Loayza-Muro, R. & Niemeyer, H.M. (2002) Temporal variation of RAPD–PCR phenotype composition of the grain aphid Sitobion avenae (Hemiptera: Aphididae) on wheat: the role of hydroxamic acids. Bulletin of Entomological Research 92, 2533.CrossRefGoogle ScholarPubMed
Fox, L.R. & Morrow, P.A. (1981) Specialization: species property or local phenomenon? Science 211, 887893.CrossRefGoogle ScholarPubMed
Fuentes-Contreras, E.Muñoz, R. & Niemeyer, H.M. (1997) Diversity of aphids (Hemiptera: Aphidoidea) in Chile. Revista Chilena de Historia Natural 70, 531542.Google Scholar
Futuyma, D.J., & Moreno, G. (1988) The evolution of ecological specialisation. Annual Review of Ecology and Systematics 19, 207234.CrossRefGoogle Scholar
Hales, D.F., Tomiuk, J.Wöhrmann, K. & Sunnucks, P. (1997) Evolutionary and genetic aspects of aphid biology: a review. European Journal of Entomology 94, 155.Google Scholar
Heie, O.E. (1987) Morphological structures and adaptation. pp. 393400in Minks, A.K. & Harrewijn, P. (Eds) Aphids: their biology, natural enemies and control. Volume 2, Amsterdam, Elsevier.Google Scholar
Hille Ris Lambers, D. (1968) A study of Neuquenaphis Blanchard, 1939, with descriptions of new species (Aphididae: Homoptera). Tijdschrift voor Entomologie 111, 257286.Google Scholar
Ingvarsson, P K. & Olsson, K. (1997) Hierarchical genetic structure and effective population sizes in Phalacrus substriatus. Heredity 79, 153161.CrossRefGoogle Scholar
Jaenike, J. (1990) Host specialization in phytophagous insects. Annual Review of Ecology and Systematics 21, 243274.CrossRefGoogle Scholar
Jermy, T. (1984) Evolution of insect/host relationships. American Naturalist 124, 609630.CrossRefGoogle Scholar
Kelley, S.T. & Farrell, B.D. (1998) Is specialization a dead end? The phylogeny of host use in Dendroctonus bark beetles (Scolytidae). Evolution 52, 17311743.CrossRefGoogle ScholarPubMed
Kelley, S.T., Farrell, B.D. & Mitton, J.B. (2000) Effects of specialization on genetic differentiation in sister species of bark beetles. Heredity 84, 218227.CrossRefGoogle ScholarPubMed
Kennedy, C.E.J. (1986) Attachment may be a basis for specialization in oak aphids. Ecological Entomology 11, 291300.CrossRefGoogle Scholar
Kimura, M. & Ohta, T. (1971) Theoretical aspects of population genetics. Princeton, Princeton University Press.Google ScholarPubMed
Lewontin, R.C. (1972) The apportionment of human diversity. Evolutionary Biology 6, 381398.Google Scholar
Langor, D.W. & Spence, J.R. (1991) Host effects on allozyme and morphological variation of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera, Scolytidae). Canadian Entomologist 123, 395410.CrossRefGoogle Scholar
Margaritopoulos, J.T., Tsitsipis, J.A., Zintzaras, E. & Blackman, R.L. (2000) Host-correlated morphological variation of Myzus persicae (Hemiptera: Aphididae) populations in Greece. Bulletin of Entomological Research 90, 233244.CrossRefGoogle ScholarPubMed
Moran, N.A. (1986) Morphological adaptation to host plants in Uroleucon (Homoptera: Aphididae). Evolution 40, 10441050.CrossRefGoogle ScholarPubMed
Moran, N.A. (1992) The evolution of aphid life cycles. Annual Review of Entomology 37, 321348.CrossRefGoogle Scholar
Mopper, S. (1996) Adaptive genetic structure in phytophagous insect populations. Trends in Ecology and Evolution 11, 235238.CrossRefGoogle ScholarPubMed
Nei, M. (1973) Analysis of gene diversity in subdivided populations. Proceeding of the National Academy of Sciences of United States of America 70, 33213323.CrossRefGoogle ScholarPubMed
Newman, D. & Pilson, D. (1997) Increased probability of extinction due to decreased genetic effective population size: experimental populations of Clarkia pulchella. Evolution 51, 354362.CrossRefGoogle ScholarPubMed
Ormazábal, C. & Benoit, I. (1987) El estado de conservación del género Nothofagus en Chile. Bosque 8, 109120.CrossRefGoogle Scholar
Peterson, M.A. & Denno., R.F. (1998a) The influence of dispersal and diet breadth on patterns of genetic isolation by distance in phytophagous insects. American Naturalist 152, 428446.CrossRefGoogle ScholarPubMed
Peterson, M.A. & Denno, R.F. (1998b) Life-history strategies and the genetic structure of phytophagous insect populations. pp. 263322in Mopper, S. & Strauss, S.Y. (Eds) Genetic structure and local adaptation in natural insect populations: effects of ecology, life history, and behavior. New York, Chapman & Hall.CrossRefGoogle Scholar
Price, P.W. (1980) The evolutionary biology of parasites. New Jersey, Princeton University Press,Google ScholarPubMed
Quednau, F.W.Remaudière, G. (1994) The neotropical genus Neuquenaphis, E.E. Blanchard, with description of two new species and definition of new sub-families of Aphididae (Homoptera). Bulletin de la Société Entomologique de France 99, 365384.CrossRefGoogle Scholar
Rausher, M.D. (1992) Natural selection and the evolution of plant-insect interactions. pp. 2088in Roitberg, B.D. & Isman, M.B. (Eds) Evolutionary perspectives in insect chemical ecology. New York, Chapman & Hall,Google Scholar
Simon, J.C., Baumann, S., Sunnucks, P., Hebert, P.D.N., Pierre, J.S., Le Gallic, J.F. & Dedryver, C.A. (1999) Reproductive mode and population genetic structure of the cereal aphid Sitobion avenae studied using phenotypic and microsatellite markers. Molecular Ecology 8, 531545.CrossRefGoogle ScholarPubMed
Simon, J.C., Rispe, C. & Sunnucks, P. (2002) Ecology and evolution of sex in aphids. Trends in Ecology and Evolution 17, 3439.CrossRefGoogle Scholar
Schneider, S., Roessli, D. & Excoffier, L. (2000) Arlequin, VersioN2.000: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Geneva, Switzerland.Google Scholar
Slatkin, M. & Barton, N.H. (1989) A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43, 13491368.CrossRefGoogle ScholarPubMed
Slatkin, M. & Voelm, L. (1991) FST in a hierarchical island model. Genetics 127, 627629.CrossRefGoogle Scholar
SPSS Inc. (1996) SPSS Base 7.0 for Windows user's guide. Chicago, Prentice Hall.Google Scholar
Sturgeon, K.B. & Mitton, J.K. (1986) Allozyme and morphological differentiation of mountain pine beetles Dendroctonus ponderosae (Coleoptera, Scolytidae) associated with host tree. Evolution 40, 290302.CrossRefGoogle ScholarPubMed
Sunnucks, P., England, P.R., Taylor, A. & Hales, D.F. (1996) Microsatellites and chromosome evolution of parthenogenetic Sitobion aphids in Australia. Genetics 144, 747756.CrossRefGoogle ScholarPubMed
Thompson, J.N. (1994) The coevolutionary process. Chicago, University of Chicago Press.CrossRefGoogle Scholar
Vanlerberghe-Masutti, F. & Chavigny, P. (1998) Host-based genetic differentiation in the aphid Aphis gossypii Glover, evidenced from RAPD fingerprints. Molecular Ecology 7, 905914.CrossRefGoogle Scholar
Van Zandt, P.A. & Mopper, S. (1998) A meta-analysis of adaptive deme formation in phytophagous insect populations. American Naturalist 152, 597606.CrossRefGoogle Scholar
Via, S. (1991) The genetic structure of host plant adaptation in a spatial patchwork: demographic variability among reciprocally transplanted pea aphid clones. Evolution 45, 827852.CrossRefGoogle Scholar
Via, S. (1999) Reproductive isolation between symmetric races of pea aphids. I. Gene flow restriction and habitat choice. Evolution 53, 14461457.CrossRefGoogle Scholar
Welsh, J.McClelland, M. (1990) Fingerprinting genome using PCR with arbitrary primers. Nucleic Acids Research 18, 72137218.CrossRefGoogle ScholarPubMed
Williams, J.G.K., Kublelik, A.R., Livac, K.J., Rafalski, J.A. & Tingey, S.V. (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18, 65316535.CrossRefGoogle ScholarPubMed
Yeh, F.C., Yang, R.C., Boyle, T.B.J., Ye, Z.H. & Mao, J.X. (1999) POPGENE 3.2, the user-friendly shareware for oopulation. genetic analysis. Molecular Biology and Biotechnology Center, University of Alberta, Edmonton.Google Scholar