Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T14:38:05.111Z Has data issue: false hasContentIssue false

Could sterile males be used to vector a microbiological control agent? The case of Rhynchophorus ferrugineus and Beauveria bassiana

Published online by Cambridge University Press:  04 October 2012

E. Llácer*
Affiliation:
Instituto Valenciano de Investigaciones Agrarias (IVIA), Unidad Asociada de Entomología Agrícola UJI-IVIA, Centro de Protección Vegetal y Biotecnología, Carretera Montcada-Nàquera km 4.5, E-46113-Montcada, Spain
C. Santiago-Álvarez
Affiliation:
Universidad de Córdoba, Departamento de Ciencias y Recursos Agrícolas y Forestales, ETSIAM, E-14071-Córdoba, Spain
J.A. Jacas
Affiliation:
Universitat Jaume I (UJI), Unitat Associada d'Entomologia Agrícola UJI-IVIA, Departament de Ciències Agràries i del Medi Natural, Campus del Riu Sec, Avenida Vicent Sos Baynat s/n, E-12071-Castelló de la Plana, Spain
*
*Author for correspondence Fax: 00 34 96 3424001 E-mail: [email protected]

Abstract

Rhynchophorus ferrugineus (Coleoptera, Curculionidae) is the most threatening pest of palms worldwide. The potential of gamma-irradiated males to spread a pathogenic strain of the entomopathogenic fungus Beauveria bassiana (Ascomycota: Clavicipitaceae) to control this pest was studied. First, the effects of gamma irradiation (15 and 25 Gy) on the mating success and performance of adult males irradiated at age one day were studied in the laboratory. Although male longevity decreased after irradiation (118.6 vs. 244.7 days for irradiated and control males, respectively) and their testes suffered from the treatment, fecundity of mated females did not depend on the irradiation status of the male (86.8 ± 5.5 eggs in 15 days). However, egg hatching was significantly lower in couples with irradiated males (31.4% vs. 86.5% for irradiated and control couples, respectively), and this value decreased after a second mating (6.1% vs. 85.9%). Therefore, irradiation did not affect male sexual competiveness but sperm quality. Second, a semi-field assay was carried out to evaluate infestation in young Phoenix canariensis caused by different combinations of couples with irradiated and/or B. bassiana-challenged males. The number of immature stages found in infested palms was significantly higher when females mated with untreated males and lower when mated with irradiated males (either B. bassiana-infected or not). Some females from the fungus-challenged treatments showed post-mortem hyphal growth, and this horizontal transmission proves that irradiated males could act as a vector for B. bassiana and should be considered as a new method to improve the biological control of R. ferrugineus.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbas, M.S.T., Hanounik, S.B., Mousa, S.A. & Mansour, M.I. (2001a) On the pathogenicity of Steinernema abbasi and Heterorhabditis indicus isolated from adult Rhynchophorus ferrugineus (Coleoptera). International Journal of Nematology 11, 6972.Google Scholar
Abbas, M.S.T., Saleh, M.M.E. & Akil, A.M. (2001b) Laboratory and field evaluation of the pathogenicity of entomopathogenic nematodes to the red palm weevil, Rhynchophorus ferrugineus (Oliv.) (Col.: Curculionidae). Journal of Pest Science 74, 167168.Google Scholar
Abbas, M.S.T., Hanounik, S.B., Shahdad, A.S. & Al-Bagham, S.A. (2006) Aggregation pheromone traps, a major component of IPM strategy for the red palm weevil, Rhynchophorus ferrugineus in date palms (Coleoptera: Curculionidae). Journal of Pest Science 79, 6973.CrossRefGoogle Scholar
Abbott, W.S. (1925) A method of computing the effectiveness of an insecticide. Journal of Economical Entomology 18, 265267.Google Scholar
Al-Ayedh, H.Y. & Rasool, K.G. (2009) Sex ratio and the role of mild relative humidity in mating behaviour of red date palm weevil Rhynchophorus ferrugineus Oliv. (Coleoptera: Curculionidae) gamma-irradiated adults. Journal of Applied Entomology 134, 157162.CrossRefGoogle Scholar
Al-Ayedh, H.Y. & Rasool, K.G. (2010) Determination of the optimum sterilizing radiation dose for control of the red date palm weevil Rhynchophorus ferrugineus Oliv. (Coleoptera: Curculionidae). Crop Protection 29, 13771380.Google Scholar
Al-Waneen, W.S., Al-Kalifah, M.S. & Al-Ayedh, H.Y. (2009) Effect of gamma radiation on the histology of the testis of red date palm weevils, Rhynchophorus ferrugineus (Olivier). Arab Journal of Plant Protection 27, 20.Google Scholar
Aslam, N.A. (1961) An assessment of some internal characters in the higher classification of the Curculionidae s.l. (Coleoptera). Transactions of the Royal Entomological Society of London 113, 417480.Google Scholar
Avand-Faghih, A. (1996) The biology of red palm weevil, Rhynchophorus ferrugineus Oliv. (Coleoptera: Curculionidae) in Saravan region (Sistan and Balouchistan Province, Iran). Applied Entomology and Phytopathology 63, 1618.Google Scholar
Butani, D.K. (1975) Insect pests of fruit crops and their control. 15: Date palm. Pesticides 9, 4042.Google Scholar
Dembilio, Ó. & Jacas, J.A. (2011) Basic bio-ecological parameters of the invasive Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae), in Phoenix canariensis under Mediterranean climate. Bulletin of Entomological Research 101, 153163.Google Scholar
Dembilio, Ó., Jacas, J.A. & Llácer, E. (2009) Are the palms Washingtonia filifera and Chamaerops humilis suitable hosts for Rhynchophorus ferrugineus (Coleoptera: Curculionidae)? Journal of Applied Entomology 133, 565567.Google Scholar
Dembilio, Ó., Llácer, E., Martínez de Altube, M.M. & Jacas, J.A. (2010a) Field efficacy of Imidacloprid and Steinernema carpocapsae in a chitosan formulation against the Red Palm Weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in Phoenix canariensis. Pest Management Science 66, 365370.Google Scholar
Dembilio, Ó., Quesada-Moraga, E., Santiago-Álvarez, C. & Jacas, J.A. (2010b) Potential of an indigenous strain of the entomopathogenic fungus Beauveria bassiana as a biological control agent against the Red Palm Weevil, Rhynchophorus ferrugineus. Journal of Invertebrate Pathology 104, 214221.Google Scholar
Dembilio, Ó., Tapia, G., Téllez, M.M. & Jacas, J.A. (2012) Lower temperature thresholds for oviposition and egg hatching of the Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae), in a Mediterranean climate. Bulletin of Entomological Research 102, 97102.CrossRefGoogle Scholar
Dowd, P.F. & Vega, F.E. (2003) Autodissemination of Beauveria bassiana by Sap Beetles (Coleoptera: Nitidulidae) to overwintering sites. Biocontrol Science Technology 13, 6575.Google Scholar
Elawad, S.A., Mousa, S.A., Shahdad, A.S., Alawaash, S.A. & Alamiri, A.M.A. (2007) Efficacy of entomopathogenic nematodes against red palm weevil in UAE. Acta Horticulturae 736, 415420.Google Scholar
El-Sufty, R., Al-Awash, S.A., Al-Bgham, S., Shahdad, A.S. & Al-Bathra, A.H. (2009) Pathogenicity of the fungus Beauveria bassiana (Bals.) Vuill to the Red Palm Weevil, Rhynchophorus ferrugineus (Oliv.) (Col.: Curculionidae) under Laboratory and Field Conditions. Egyptian Journal of Biological Pest Control 19, 8185.Google Scholar
European and Mediterranean Plant Protection Organization (2009) First record of Rhynchophorus ferrugineus in Curaçao, Netherlands Antilles. European and Mediterranean Plant Protection Organization Reporting Service. Pests & Diseases. 2009/002. Available online at http://archives.eppo.int/EPPOReporting/2009/Rsf-0901.pdf.Google Scholar
European Union (2007) Commission Decision 2007/365/EC of 25 May 2007 on emergency measures to prevent the introduction into and the spread within the Community of Rhynchophorus ferrugineus (Olivier). Official Journal European Union L139, 2427.Google Scholar
Faleiro, J.R. (2006) A review of the issues and management of the red palm weevil Rhynchophorusferrugineus (Coleoptera: Rhynchophoridae) in coconut and date palm during the last one hundred years. International Journal of Tropical Insect Science 26, 135154.Google Scholar
Faleiro, J.R. & Kumar, J.A. (2008) A rapid decision sampling plan for implementing area-wide management of the red palm weevil, Rhynchophorus ferrugineus, in coconut plantations of India. Journal Insect Science 8. Article 15. Available online at http://insectscience.org/8.15 (accessed 21 August 2012)Google Scholar
Gindin, G., Levski, S., Glazer, I. & Soroker, V. (2006) Evaluation of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana against the Red Palm Weevil Rhynchophorus ferrugineus. Phytoparasitica 34, 370379.Google Scholar
Gothi, K.K., Hire, R.S., Vijayalakshimi, N. & Dongre, T.K. (2007) Studies on mating behaviour of radio-sterilized males of red palm weevil, Rhynchophorus ferrugineus (Oliv). Journal of Nuclear Agriculture and Biology 36, 6572.Google Scholar
Kaakeh, W. (2005) Longevity, fecundity, and fertility of the red palm weevil, Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) on natural and artificial diets. Emirates Journal of Agricultural Sciences 17, 2333.Google Scholar
Kranz, J.H., Schmutterer, H. & Koc, W. (1982) Enfermedades, Plagas y Malezas de los Cultivos Subtropicales. Berlin, Germany, Verlag Paul Parey.Google Scholar
Krishnakumar, R. & Maheswari, P. (2007) Assessment of the Sterile Insect Technique to Manage Red Palm Weevil Rhynchophorus ferrugineus in Coconut. pp. 475485in Vreysen, M.J.B., Robinson, A.S. & Hendrichs, J. (Eds) Area-wide Control of Insect Pests. Dordrecht, The Netherlands, Springer.Google Scholar
Kreutz, J., Zimmermann, G. & Vaupel, O. (2004) Horizontal Transmission of the entomopathogenic fungus Beauveria bassiana among the Spruce Bark Beetle, Ipstypographus (Col., Scolytidae) in the laboratory and under field conditions. Biocontrol Science and Technology 14, 837848.Google Scholar
Lacey, L.A., Kirk, A.A., Millar, L., Mereadier, G. & Vidal, C. (1999) Ovicidal and larvicidal activity of conidia and blastospores of Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes) against Bemisia argentifolii (Homoptera:Aleyrodidae) with a description of a bioassay system allowing prolonged survival of control insects. Biocontrol Science and Technology 9, 918.CrossRefGoogle Scholar
Lance, D.R. & McInnis, D.O. (2005) Biological Basis of the Sterile Insect Technique. pp. 6994in Dyck, V.A., Hendrichs, J. & Robinson, A.S. (Eds) Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management. Dordrech, The Netherlands, Springer.Google Scholar
Leather, S.R. (1988) Size, reproductive potential and fecundity in insects: things aren't as simple as they seem. Oikos 51, 386388.Google Scholar
Lepesme, P. (1947) Les Insectes des Palmiers. Paris, France, P. Lechevalier.Google Scholar
Llácer, E. & Jacas, J.A. (2010) Efficacy of phosphine as a fumigant against Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in palms. Spanish Journal of Agricultural Research 8, 775779.Google Scholar
Llácer, E., Martínez de Altube, M.M. & Jacas, J.A. (2009) Evaluation of the efficacy of Steinernema carpocapsae in a chitosan formulation against the Red Palm Weevil, Rhynchophorus ferrugineus in Phoenix canariensis. BioControl 54, 559565.Google Scholar
Llácer, E., Dembilio, O. & Jacas, J.A. (2010) Evaluation of the Efficacy of an Insecticidal Paint Based on Chlorpyrifos and Pyriproxyfen in a Micro-encapsulated Formulation against the Red Palm Weevil, Rhynchophorus ferrugineus. Journal of Economical Entomology 103, 402408.Google Scholar
Llácer, E., Negre, M. & Jacas, J.A. (2012) Evaluation of an oil dispersion formulation of Imidacloprid as a drench against Rhynchophorus ferrugineus (Coleoptera, Curculionidae) in young palm trees. Pest Management Sciences 68, 878882.Google Scholar
Martín, M.M. & Cabello, T. (2006) Manejo de la cría del picudo rojo de la palmera, Rhynchophorus ferrugineus (Olivier, 1790) (Coleoptera, Dryophthoridae), en dieta artificial y efectos en su biometría y biología. Boletín de Sanidad Vegetal. Plagas 32, 631641.Google Scholar
Mohamed, H.F. (2010) Histological Studies On The Midgut Of The Gamma Irradiated Red Palm Weevil, Rhynchophorus ferrugineus (Olivier) Coleoptera: Curculionidae. Isotope & Radiation Research 42, 161172.Google Scholar
Murphy, S.T. & Briscoe, B.R. (1999) The red palm weevil as an alien invasive: biology and the prospects for biological control as a component of IPM. Biocontrol News and Information 20, 3546.Google Scholar
Novelo-Rincón, L.F., Montoya, P., Hernández-Ortiz, V., Liedo, P. & Toledo, J. (2009) Mating performance of sterile Mexican fruit fly Anastrepha ludens (Dipt., Tephritidae) males used as vectors of Beauveria bassiana (Bals.) Vuill. Journal of Applied Entomology 133, 702710.Google Scholar
Prabhu, S.T. & Patil, R.S. (2009) Studies on the biological aspects of red palm weevil Rhynchophorus ferrugineus (Oliv.). Karnataka Journal of Agricultural Sciences 22, 732733.Google Scholar
Prabhu, S.T., Dongre, T.K. & Patil, R.S. (2010) Effect of irradiation on the biological activities of red palm weevil, Rhynchophorus ferrugineus Olivier. Karnataka Journal of Agricultural Sciences 23, 186188.Google Scholar
Quesada-Moraga, E., Santos-Quiros, R., Valverde-Garcia, P. & Santiago-Álvarez, C. (2004) Virulence, horizontal transmission, and sublethal reproductive effects of Metarhizium anisopliae (anamorphic fungi) on the German cockroach (Blattodea: Blattellidae). Journal of Invertebrate Pathology 87, 5158.Google Scholar
Rahalkar, G.W., Harwalkar, M.R., Rananavare, H.D., Shantaram, K. & Ayengar, A.R.G. (1973) Laboratory studies on radiation sterilization of Rhynchophorus ferrugineus males. Journal of Plantation Crops 1, 141145.Google Scholar
Rahalkar, G.W., Harwalkar, M.R. & Rananavare, H.D. (1975) Laboratory studies on sterilization of male Rhynchophorus ferrugineus. pp. 261267 in Sterility Principle for Insect Control 1974. International Atomic Energy Agency (Ed.), Vienna, Austria.Google Scholar
Rahalkar, G.W., Harwalkar, M.R., Rananvare, H.D., Kurgan, C., Abrham, V.A. & Koya, K.M.A. (1977) Preliminary field studies on the control of the red palm weevil, Rhynchophorus ferrugineus using radio sterilized males. Journal of Nuclear Agriculture and Biology 6, 6568.Google Scholar
Ranavara, H.D., Harwalkar, M.R. & Rahalkar, G.W. (1975) Studies on the feasibility of using sterile females along with sterile males in the control of red palm weevil, Rhynchophorus ferrugineus Oliv. (Coleoptera: Curculionidae). pp. 861868 in Use of Radiations and Radioisotopes in Studies of Plant Productivity: Proceedings of a Symposium held at G.B. Pant University of Agriculture and Technology, Pantnagar, India, 12–14 April, 1974, Department of Atomic Energy, Bombay, India.Google Scholar
Ramachandram, C.P. (1991) Effect of gamma radiation on various stages of red date palm weevil, Rhynchophorus ferrugineus Oliv. Journal of Nuclear Agriculture and Biology 3, 218221.Google Scholar
Saleh, M.M.E. & Alheji, M. (2003) Biological control of red palm weevil with entomopathogenic nematodes in the eastern province of Saudi Arabia. Egyptian Journal of Biological Pest Control 13, 5559.Google Scholar
Sewify, G.H., Belal, M.H. & Al-Awash, S.A. (2009) Use of the entomopathogenic fungus, Beauveria bassiana for the biological control of the red palm weevil, Rhynchophorus ferrugineus Olivier. Egyptian Journal of Biological Pest Control 19, 157163.Google Scholar
Viado, G.B. & Bigornia, A.E. (1949) A biological study of the asiatic palm weevil, Rhynchophorus ferrugineus (Olivier) (Curculionidae, Coleoptera). The Philippine Agriculturist 33, 127.Google Scholar
Vickers, R.A., Furlong, M.J., White, A. & Pell, J.K. (2004) Initiation of fungal epizootics in diamondback moth populations within a large field cage: proof of concept for auto-dissemination. Entomologia Experimentalis et Applicata 111, 717.Google Scholar
Wattanapongsiri, A. (1966) A Revision of the Genera Rhynchophorus and Dynamis (Coleoptera: Curculionidae). Bangkok, Thailand. Department of Agriculture Sciences Bulletin 1, 1329.Google Scholar