Published online by Cambridge University Press: 10 March 2011
Molecular approaches for identifying aquatic macroinvertebrate species are increasingly being used but there is ongoing debate about the number of DNA markers needed to differentiate species accurately. Here, we use two mitochondrial genes (cytochrome oxidase I, cytochrome b) and a nuclear gene (carbamoylphosphate synthetase) to differentiate species variation within the taxonomically challenging chironomid genus Procladius from southern Australia, a genus which is important for pollution monitoring. The mitochondrial genes indicated cryptic species that were subsequently linked to morphological variation at the larval and pupal stage. Two species previously described based on morphological criteria were linked to molecular markers, and there was evidence for additional cryptic species. Each genetic marker provided different information, highlighting the importance of considering multiple genes when dissecting taxonomically difficult groups, particularly those used in pollution monitoring.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.