Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T01:15:32.788Z Has data issue: false hasContentIssue false

Chinese chives and garlic in intercropping in strawberry high tunnels for Neopamera bilobata Say (Hemiptera: Rhyparochromidae) control

Published online by Cambridge University Press:  08 May 2018

F.T. Hata*
Affiliation:
Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445, Km 380, Londrina, Paraná, Brazil
M.U. Ventura*
Affiliation:
Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445, Km 380, Londrina, Paraná, Brazil
V.L. Béga
Affiliation:
Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445, Km 380, Londrina, Paraná, Brazil
I.M. Camacho
Affiliation:
Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445, Km 380, Londrina, Paraná, Brazil
M.T. de Paula
Affiliation:
Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445, Km 380, Londrina, Paraná, Brazil
*
*Author for correspondence Phone: +55 44 9 9835-9127 Fax: +55 43 3371-4555 E-mail: [email protected]
*Author for correspondence Phone: +55 43 3371-4793 Fax: +55 43 3371-4555 E-mail: [email protected]

Abstract

Strawberry is affected by several pests and diseases. Neopamera bilobata is an emerging pest that has been reported by several strawberry growers, usually associated with catfacing symptoms in fruits. We evaluated intercropping garlic or Chinese chives on N. bilobata populations on strawberry crops grown in high tunnels in two experiments. In the first experiment, we evaluated N. bilobata populations on strawberry intercropping with garlic plants (three densities: 8, 16, 24 GP – garlic plant per plot) on the bags by taking 12 samples from December 2015 to April 2017. N. bilobata populations on strawberry were also assessed when Chinese chives were grown under the suspended wooden structures in which strawberry plants are grown (‘undercropping’) (14 samples), in two high tunnels, from November 2016 to March 2017. The number of nymphs and adults on 14 randomly selected fruits per plot were assessed. During the garlic intercropping experiment, the treatments of three densities of garlic reduced N. bilobata populations; however, the 24 GP treatment caused a greater reduction than the 8 GP treatment. Garlic densities reduced N. bilobata populations by 35, 50, and 64% for the 8, 16, and 24 GP treatments, respectively. Chinese chives cultivated under the structures reduced N. bilobata populations by 47%. The results suggest that intercropping garlic or undercropping Chinese chives are suitable tools to be tested in integrated pest management in strawberry crops.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anjum, M.A., Qasim, S.A., Ahmad, S. & Hussain, S. (2015) Assessment of advantages of pea and non-legume winter vegetable intercropping systems through competition and economic indices. Experimental Agriculture 51, 327343.Google Scholar
Ayres, M. (2007) BioEstat 5.0: Aplicações estatísticas nas áreas das Ciências biológicas e médicas. Brasília, Conselho Nacional de Desenvolvimento Científico e Tecnológico.Google Scholar
Bernardi, D., Botton, M., Nava, D. & Zawadneak, M.A.C. (2015) Guia para a identificação e monitoramento de pragas e seus inimigos naturais em morangueiro. Brasília, Empresa Brasileira de Pesquisa Agropecuária – Embrapa. p. 46.Google Scholar
Canteri, M.G., Althaus, R.A., Filho, J.S.V., Giglioti, E.A. & Godoy, C.V. (2001) SASM – Agri: Sistema para análise e separação de médias em experimentos agrícolas pelos métodos Scott–Knott, Tukey e Duncan. Revista Brasileira de Agrocomputação 1, 1824.Google Scholar
Choh, Y., Shimoda, T., Ozawa, R., Dicke, M. & Takabayashi, J. (2004) Exposure of bean leaves to volatiles from herbivore-induced conspecific plants results in emission of carnivore attractants: active or passive process? Journal of Chemical Ecology 30, 13051317.Google Scholar
De Melo, B.A. (2017) Controle biológico conservativo e produção integrada do morangueiro (PIMo). PhD Thesis, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil.Google Scholar
Deprá, M., Poppe, J.L., Schmitz, H.J., De Toni, D.C. & Valente, V.L.S. (2014) The first records of the invasive pest Drosophila suzukii in the South American continent. Journal of Pest Science 87, 379383.Google Scholar
Gallardos-Granados, S.Ç., Salazar-Solís, E., Salas-Araiza, M.D. & Martínez-Jaime, O.A. (2016) Incidencia de especies de hemípteros en fresa bajo dos sistemas de cultivo en Irapuato, Guanajuato, México. Southwestern Entomologist 42, 547560.Google Scholar
Hata, F.T., Ventura, M.U., Carvalho, M.G., Miguel, A.L.A., Souza, M.S.J., de Paula, M.T. & Zawadneak, M.A.C. (2016) Intercropping garlic plants reduces Tetranychus urticae in strawberry crop. Experimental and Applied Acarology 69, 311321.Google Scholar
Himanen, S.J., Blande, J.D., Klemola, T., Pulkkinen, J., Heijari, J. & Holopainen, J.K. (2010) Birch (Betula spp.) leaves adsorb and re-release volatiles specific to neighbouring plants-a mechanism for associational herbivore resistance? New Phytologist 186, 722732.Google Scholar
Islam, M.R., Hossain, M.F., Mian, M.A.K., Hossain, J. & Alam, M.A. (2016) Outcome of intercropping garlic with brinjal for the small holder farmers of Bangladesh. Indian Journal of Agricultural Research 50, 177182.Google Scholar
Karlidag, H. & Yildirim, E. (2009) Strawberry intercropping with vegetables for proper utilization of space and resources. Journal of Sustainable Agriculture 33, 107116.Google Scholar
Kuhn, T.M.A., Loeck, A.E., Zawadneak, M.A.C., Garcia, M.S. & Botton, M. (2014) Parâmetros biológicos e tabela de vida de fertilidade de Neopamera bilobata (Hemiptera: Rhyparochromidae) em morangueiro. Pesquisa Agropecuária Brasileira 49, 422427.Google Scholar
Kuhn, T.M.A., Loeck, A.E. & Botton, M. (2018) Thermal requirements and estimated number of generations of Neopamera bilobata (Say) in strawberry-producing regions of Brazil. Ciência Rural 48, e20170212.Google Scholar
Liu, X.C., Hu, J.F., Zhou, L. & Liu, Z.L. (2014) Evaluation of fumigant toxicity of essential oils of Chinese medicinal herbs against Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Journal of Entomology and Zoology Studies 2, 164169.Google Scholar
Mtambo, C.C. & Zeledon, I.H. (2000) The development of integrated control methods for the tomato red spider mite (Tetranychus evansi) in Malawi. pp. 139–147 in Agricultural technologies for sustainable development in Malawi. Proceedings of the First Annual Scientific Conference held at the Malawi Institute of Management.Google Scholar
Ninkovic, V., Dahlin, I., Vucetic, A., Petrovic-Obradovic, O., Glinwood, R. & Webster, B. (2013) Volatile exchange between undamaged plants – a new mechanism affecting insect orientation in intercropping. PLoS ONE 8, e69431.Google Scholar
Noman, M.S, Maleque, M.A., Alam, M.Z., Afroz, S. & Ishii, H.T. (2013) Intercropping mustard with four spice crops suppresses mustard aphid abundance, and increases both crop yield and farm profitability in central Bangladesh. International Journal of Pest Management 59, 306313.Google Scholar
Sarker, P.K., Rahman, M.M. & Das, B.C. (2007) Effect of intercropping of mustard with onion and garlic on aphid population and yield. Journal of Bio-science 15, 3540.Google Scholar
Shahriari, M. & Sahebzadeh, N. (2017). Effect of diallyl disulfide on physiological performance of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Archives of Phytopathology and Plant Protection 50, 3346.Google Scholar
Stenberg, J.A. (2017) A conceptual framework for integrated pest management. Trends in Plant Science 22, 759769.Google Scholar
Tiroesele, B. & Matshela, O. (2015) The effect of companion planting on the abundance of cabbage aphid, Brevicoryne brassicae L., on kale (Brassica oleracea var. acephala). Journal of Plant and Pest Science 2, 5765.Google Scholar
Tscharntke, T., Thiessen, S., Dolch, R. & Boland, W. (2001) Herbivory, induced resistance, and interplant signal transfer in Alnus glutinosa. Biochemical Systematics and Ecology 29, 10251047.Google Scholar
Vandermeer, J.H. (1989) The Ecology of Intercropping. Cambridge, Cambridge University Press.Google Scholar
Yabuki, Y., Mukaida, Y., Saito, Y., Oshima, K., Takahashi, T., Muroi, E., Hashimoto, K. & Uda, Y. (2010) Characterisation of volatile sulphur-containing compounds generated in crushed leaves of Chinese chive (Allium tuberosum Rottler). Food Chemistry 120, 343348.Google Scholar
Yu, J.Q. (1999) Allelopathic suppression of Pseudomonas solanacearum infection of tomato (Lycopersicon esculentum) in a tomato-Chinese chive (Allium tuberosum) intercropping system. Journal of Chemical Ecology 25, 24092417.Google Scholar
Zawadneak, M.A.C., Barboza, R.G., Pimentel, I.C., Schuber, J.M., Poltronieri, A.S. & Solis, M. (2016) First record of Duponchelia fovealis (Lepidoptera: Crambidae) in South America. Idesia 34, 9195.Google Scholar
Zhang, H., Mallik, A. & Zeng, R.S. (2013) Control of Panama disease of banana by rotating and intercropping with Chinese chive (Allium tuberosum Rottler): role of plant volatiles. Journal of Chemical Ecology 39, 243252.Google Scholar
Zhou, H., Chen, J., Liu, Y., Francis, F., Haubruge, E., Bragard, C., Sun, J. & Cheng, D. (2013) Influence of garlic intercropping or active emitted volatiles in releasers on aphid and related beneficial in wheat fields in China. Journal of Integrative Agriculture 12, 467473.Google Scholar