Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-22T18:17:02.851Z Has data issue: false hasContentIssue false

The biology of Dactylopius tomentosus (Hemiptera: Dactylopiidae)

Published online by Cambridge University Press:  10 February 2009

C.W. Mathenge
Affiliation:
Zoology Department, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa Plant Protection Research Institute, Agricultural Research Council, Private Bag X134, Pretoria 0001, South Africa Centre for Plant and Food Science, University of Western Sydney (Hawkesbury Campus), Locked Bag 1797, Penrith South DC, NSW 1797, Australia
P. Holford*
Affiliation:
Centre for Plant and Food Science, University of Western Sydney (Hawkesbury Campus), Locked Bag 1797, Penrith South DC, NSW 1797, Australia
J.H. Hoffmann
Affiliation:
Zoology Department, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa
R. Spooner-Hart
Affiliation:
Centre for Plant and Food Science, University of Western Sydney (Hawkesbury Campus), Locked Bag 1797, Penrith South DC, NSW 1797, Australia
G.A.C. Beattie
Affiliation:
Centre for Plant and Food Science, University of Western Sydney (Hawkesbury Campus), Locked Bag 1797, Penrith South DC, NSW 1797, Australia
H.G. Zimmermann
Affiliation:
Plant Protection Research Institute, Agricultural Research Council, Private Bag X134, Pretoria 0001, South Africa
*
*Author for correspondence Fax: +61 2 4570 1314 E-mail: [email protected]

Abstract

Dactylopius tomentosus (Lamarck) (Hemiptera: Dactylopiidae) is a cochineal insect whose host range is restricted to Cylindropuntia species (Caryophyllales: Cactaceae). This insect has been utilized successfully for biological control of Cylindropuntia imbricata (Haw.) F.M. Knuth in Australia and South Africa. Despite this, its biology has not been studied previously, probably due to the widely held belief that the biology of all Dactylopius species is similar. This study investigated the life cycle and the morphological and reproductive characteristics of D. tomentosus. Results revealed some unique characteristics of D. tomentosus: (i) eggs undergo a much longer incubation period, an average of 17 days compared to <1 day in its congeners; (ii) eggs are laid singly but are retained as an egg mass secured in a mesh of waxy threads attached to the female; (iii) the developmental times of males and females are longer compared to other Dactylopius spp. due to a longer egg incubation period; (iv) D. tomentosus does not undergo parthenogenesis; (v) D. tomentosus is smaller in size than its congeners; and (vi) male mating capacity and reproductive potential were both high and variable between males. There was a significant, strong, positive relationship (r=0.93) between female mass and fecundity, whereas the relationship between the number of females mated per male that became gravid and their fecundity was negative (r=−0.68). Besides contributing to our knowledge of this economically important species, the finding of unique characteristics of D. tomentosus biology underlines the need to study each species in this genus.

Type
Research Paper
Copyright
Copyright © 2009 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnqvist, G. & Nilsson, T. (2000) The evolution of polyandry: multiple mating and female fitness in insects. Animal Behaviour 60, 145164.CrossRefGoogle ScholarPubMed
Awmack, C.S. & Leather, S.R. (2002) Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology 47, 817844.CrossRefGoogle ScholarPubMed
Baranyovits, F.L.C. (1978) Cochineal carmine: an ancient dye with a modern role. Endeavour 2, 8593.CrossRefGoogle Scholar
Ben-Dov, Y. (2006) A Systematic Catalogue of Eight Scale Insect Families (Hemiptera: Coccoidea) of the World: Aclerdidae, Asterolecaniidae, Beesoniidae, Carayonemidae, Conchaspididae, Dactylopiidae, Kerriidae and Lecanodiaspididae. 368 pp. Amsterdam, The Netherlands, Elsevier Science and Technology.Google Scholar
Claps, L.E. & de Haro, M.E. (2001) Coccoidea (Insecta: Hemiptera) associated with Cactaceae in Argentina. Journal of the Professional Association for Cactus Development 4, 7783.Google Scholar
Claps, L.E., Zamudio, P. & Briz, L.D. (2006) Las Dactylopiidae y Diaspididae (Hemiptera, Coccoidea) de la Colección Kenneth Hayward, Tucumán, Argentina/The Dactylopiidae and Diaspididae (Hemiptera, Coccoidea) of the Kenneth Hayward Collection, Tucumán, Argentina. Revista brasileira de entomologia 50, 3338.CrossRefGoogle Scholar
Cox, J.M. (1987) Pseudococcidae (Insecta: Hemiptera). Fauna of New Zealand, 11. 230 pp. Auckland, New Zealand, DSIR Plant Protection.Google Scholar
De Lotto, G. (1974) On the status and identity of the cochineal insects (Homoptera: Coccoidea: Dactylopiidae). Journal of the Entomological Society of South Africa 37, 167193.Google Scholar
Denoth, M., Frid, L. & Myers, J.H. (2002) Multiple agents in biological control: improving the odds? Biological Control 24, 2030.CrossRefGoogle Scholar
Dodd, A.P. (1940) The Biological Campaign against Prickly Pear. 177 pp. Brisbane, Australia, Commonwealth Prickly Pear Board Bulletin.Google Scholar
Eisner, T., Nowicki, S., Goetz, M. & Meinwald, J. (1980) Red cochineal (carminic acid): its role in nature. Science 208, 10391042.CrossRefGoogle ScholarPubMed
Eisner, T., Ziegler, R., McCormick, J.L., Eisner, M., Hoebeke, E.R. & Meinwald, J. (1994) Defensive use of an acquired substance (carminic acid) by predaceous insect larvae. Experientia 50, 610615.CrossRefGoogle ScholarPubMed
Flores-Hernández, A., Murillo-Amador, B., Rueda-Puente, E.O., Salazar-Torres, J.C., García-Hernández, J.L. & Troyo-Diéguez, E. (2006) Reproduction of wild cochineal Dactylopius opuntiae (Homoptera: Dactylopiidae). Revista Mexicana de Biodiversidad 77, 97102.CrossRefGoogle Scholar
Fox, C.W. & Czesak, M.E. (2000) Evolutionary ecology of progeny size in arthropods. Annual Review of Entomology 45, 341369.CrossRefGoogle ScholarPubMed
Fox, C.W., Thakar, M.S. & Mousseau, T.A. (1997) Egg size plasticity in a seed beetle: an adaptive maternal effect. American Naturalist 149, 149163.CrossRefGoogle Scholar
Gill, R.I. (1993) The Scale Insects of California, Part 2: The Minor Families Margarodidae, Ortheziidae, Kermesidae, Asterolecaniidae Lecanodiaspididae, Cerococcidae, Aclerdidae, Kerriidae, Dactylopiidae, Eriococcidae, and Phoenicococcidae. Technical Series in Agricultural Biosystematics and Plant Pathology, 2. 241 pp. Sacramento, California, California Department of Food and Agriculture.Google Scholar
Gilreath, M.E. & Smith, J.W. (1987) Bionomics of Dactylopius confusus (Homoptera: Dactylopiidae). Annals of the Entomological Society of America 80, 768774.CrossRefGoogle Scholar
Githure, C.W., Zimmermann, H.G. & Hoffmann, J.H. (1999) Host specificity of biotypes of Dactylopius opuntiae (Cockerell) (Hemiptera: Dactylopiidae): prospects for biological control of Opuntia stricta (Haworth) Haworth (Cactaceae) in Africa. African Entomology 7, 4348.Google Scholar
Guerra, G.P. & Kosztarab, M. (1992) Biosystematics of the family Dactylopiidae (Homoptera: Coccineae) with emphasis on the life cycle of Dactylopius coccus Costa: studies on the morphology and systematics of scale insects No. 16. Bulletin No. 92–1. Blacksburg, Virginia, Virginia Agricultural Experiment Station, Virginia Polytechnic Institute and State University.Google Scholar
Gullan, P.J. & Kosztarab, M. (1997) Adaptations in scale insects. Annual Review of Entomology 42, 2350.CrossRefGoogle ScholarPubMed
Gullan, P.J. & Martin, J.H. (2003) Sternorrhyncha. Jumping plant lice, whiteflies, aphids and scale insects. pp. 10791089in Resh, V.H. & Cardé, R.T. (Eds) Encyclopaedia of Insects. London, UK, Academic Press.Google Scholar
Gunn, B.H. (1978) Sexual dimorphism in the first instar of the cochineal insect Dactylopius austrinus De Lotto (Homoptera: Dactylopiidae). Journal of Entomological Society of Southern Africa 41, 333356.Google Scholar
Honek, A. (1993) Intrapsecific variation in body size and fecundity in insects: a general relationship. Oikos 66, 483492.CrossRefGoogle Scholar
Hosking, J.R. (1984) The effect of temperature on the population growth potential of Dactylopius austrinus De Lotto (Homoptera: Dactylopiidae), on Opuntia aurantiaca Lindley. Journal of Australian Entomological Society 23, 133139.CrossRefGoogle Scholar
Julien, M.H. & Griffiths, M.W. (1998) Biological Control of Weeds: A World Catalogue of Agents and their Target Weeds. 223 pp. Wellingford, UK, CAB International.Google Scholar
Karny, M. (1972) Comparative studies on three Dactylopius species (Homoptera: Dactylopiidae) attacking introduced opuntias in South Africa. Entomological Memoir of the Department of Agriculture and Technical Services of the Republic of South Africa 26, 119.Google Scholar
Leather, S.R. (1988) Size, reproductive potential and fecundity in insects: things aren't as simple as they seem. Oikos 51, 386389.CrossRefGoogle Scholar
Mann, J. (1969) Cactus-feeding insects and mites. Smithsonian Institution Bulletin 256, 158 pp. Washington, DC, Smithsonian Institution.Google Scholar
Miller, D.R. & Kosztarab, M. (1979) Recent advances in the study of scale insects. Annual Review of Entomology 24, 127.CrossRefGoogle Scholar
Moran, V.C. (1980) Interactions between phytophagous insects and their Opuntia hosts. Ecological Entomology 5, 153164.CrossRefGoogle Scholar
Moran, V.C. & Cobby, B.S. (1979) On the life history and fecundity of the cochineal insect, Dactylopius austrinus De Lotto (Homoptera: Dactylopiidae), a biocontrol agent for the cactus Opuntia aurantiaca. Bulletin of Entomological Research 69, 629636.CrossRefGoogle Scholar
Moran, V.C. & Zimmermann, H.G. (1984) The biological control of cactus weeds: achievements and prospects. Bicontrol News and Information 5, 297320.Google Scholar
Moran, V.C. & Zimmermann, H.G. (1991) Biological control of cactus weeds of minor importance in South Africa. Agriculture, Ecosystems and Environment 37, 3755.CrossRefGoogle Scholar
Moran, V.C., Gunn, B.H. & Walter, G.H. (1982) Wind dispersal and settling of first-instar crawlers of the cochineal insect Dactylopius austrinus (Homoptera: Coccoidea: Dactylopiidae). Ecological Entomology 7, 409419.Google Scholar
Portillos, M.L. & Vigueras, A.L. (2006) A review of the cochineal species in Mexico, hosts and natural enemies. Acta Horticulturae 728, 249255.CrossRefGoogle Scholar
Rodríguez, L.C., Méndez, M.A. & Niemeyer, H.M. (2001) Direction of dispersal of cochineal (Dactylopius coccus Costa) within the Americas. Antiquity 75, 7377.CrossRefGoogle Scholar
Snee, R.D. (1974) Graphical display of two-way contingency tables. American Naturalist 28, 912.Google Scholar
StatSoft Inc. (2007) Electronic Statistics Textbook. Tulsa, OK, StatSoft. Available at http://www.statsoft.com/textbook/stathome.html.Google Scholar
Sullivan, P.R. (1990) Population growth potential of Dactylopius ceylonicus Green (Hemiptera: Dactylopiidae) on Opuntia vulgaris Miller. Journal of Australian Entomological Society 29, 123129.CrossRefGoogle Scholar
Suomalainen, E. (1962) Significance of parthenogenesis in the evolution of insects. Annual Review of Entomology 7, 349366.CrossRefGoogle Scholar
Tamaru, T., Kaitaniemi, P. & Ruohomaki, K. (1996) Realized fecundity in Epirrita autumnata (Lepidoptera: Geometridae): relation to body size and consequences to population dynamics. Oikos 77, 407416.CrossRefGoogle Scholar
Volchansky, C.R., Hoffmann, J.H. & Zimmermann, H.G. (1999) Host-plant affinities of two biotypes of Dactylopius opuntiae (Homoptera: Dactylopiidae): enhanced prospects for biological control of Opuntia stricta (Cactaceae) in South Africa. Journal of Applied Ecology 36, 8591.CrossRefGoogle Scholar
Washburn, J.O. & Washburn, L. (1984) Active aerial dispersal of minute wingless arthropods: exploitation of boundary-layer velocity gradients. Science 223, 10881089.CrossRefGoogle ScholarPubMed
Watson, G.W. & Chandler, L.R. (1999) Identification of Mealybugs Important in the Caribbean Region. 40 pp. Wallingford, UK, Commonwealth Science Council and CAB International.Google Scholar
Williams, D.J. & Granara de Willink, M.C. (1992) Mealybugs of Central and South America. 635 pp. Wallingford, UK, Commonwealth Science Council and CAB International.Google Scholar
Zanuncio, J.C., Molina-Rugama, A.J., Santos, G.P. & Ramalho, F.S. (2002) Effect of body weight on fecundity and longevity of the stinkbug predator Podisus rostralis. Pesquisa Agropecuária Brasileira 37, 12251230.CrossRefGoogle Scholar
Zimmermann, H.G. & Granata, G. (2002) Insect pests and diseases. pp. 235254in Nobel, P.S. (Ed.) Cacti: Biology and Uses. Berkeley, CA, University of California Press.Google Scholar