Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T08:59:56.928Z Has data issue: false hasContentIssue false

Baseline determination and detection of resistance to imidacloprid in Bemisia tabaci (Homoptera: Aleyrodidae)

Published online by Cambridge University Press:  10 July 2009

Matthew Cahill*
Affiliation:
Department of Biological and Ecological Chemistry, IACR – Rothamsted, Harpenden, UK
Kevin Gorman
Affiliation:
Department of Biological and Ecological Chemistry, IACR – Rothamsted, Harpenden, UK
Sara Day
Affiliation:
Department of Biological and Ecological Chemistry, IACR – Rothamsted, Harpenden, UK
Ian Denholm
Affiliation:
Department of Biological and Ecological Chemistry, IACR – Rothamsted, Harpenden, UK
Alfred Elbert
Affiliation:
Bayer AG, Agrochemicals Division, Research Insecticides, Institut für Tiersche Schädlinge, Leverkusen, Germany
Ralf Nauen
Affiliation:
Bayer AG, Agrochemicals Division, Research Insecticides, Institut für Tiersche Schädlinge, Leverkusen, Germany
*
Correspondence: Matthew Cahill, Department of Biological and Ecological Chemistry, IACR – Rothamsted, Harpenden, Herts, AL5 2JQ, UK.

Abstract

Adult Bemisia tabaci (Gennadius) were tested with imidacloprid in a bioassay method using systemically treated cotton leaves. The method was simple, robust and repeatable and provided baseline data for a laboratory and a number of recently collected field strains. The LC50 for imidacloprid susceptible strains was calculated to be 1.7 ppm and a concentration of 16 ppm determined as diagnostic for imidacloprid resistance. Ten strains of B. tabaci collected from the Almeria region of Spain showed significantly less mortality at the diagnostic dose than the susceptible strains. The intensive use of imidacloprid in the Almeria region is considered the reason for the occurrence of resistance in this locality. Resistance to organophosphates, pyrethroids and endosulfan in B-type and non-B type B. tabaci did not confer resistance to imidacloprid.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anon. (1987) POLO-PC – a user's guide to Probit or Logit analysis. 22 pp. California, LeOra Software.Google Scholar
Bai, D., Lummis, S.C.R., Leicht, W., Breer, H. & Sattelle, D.B. (1991) Actions of imidacloprid and a related nitromethylene on cholinergic receptors of an identified insect motor neurone. Pesticide Science 33, 197204.CrossRefGoogle Scholar
Bartlett, P. (1992) Experience of polyphagous alien pests of protected crops in Great Britain. Bulletin OEPP/EPPO 2, 337346.CrossRefGoogle Scholar
Byrne, F.J. & Devonshire, A.L. (1993) Insensitive acetylcholin-esterase and esterase polymorphism in susceptible and resistant populations of the tobacco whitefly Bemisia tabaci (Genn.). Pesticide Biochemistry and Physiology 45, 3442.CrossRefGoogle Scholar
Cahill, M. & Denholm, I. (1993) Detection of resistance to buprofezin in the whitefly Bemisia tabaci. Resistant Pest Management Newsletter 5, 42.Google Scholar
Cahill, M., Byrne, F.J., Denholm, I., Devonshire, A.L. & Gorman, K.J. (1994) Insecticide resistance in Bemisia tabaci. Pesticide Science 42, 137139.Google Scholar
Cahill, M., Byrne, F.J., Gorman, K., Denholm, I. & Devonshire, A.L. (1995) Pyrethroid and organophosphate resistance in the tobacco whitefly Bemisia tabaci (Homoptera: Aleyrodidae). Bulletin of Entomological Research 85, 181187.CrossRefGoogle Scholar
Cahill, M., Jarvis, W., Gorman, K. & Denholm, I. (1996) Resolution of baseline responses and documentation of resistance to buprofezin in Bemisia tabaci (Homoptera: Aleyrodidae). Bulletin of Entomological Research 86, 116122.Google Scholar
Costa, H.S. & Brown, J.K. (1991) Variation in biological characteristics and esterase patterns among populations of Bemisia tabaci, and the association of one population with silverleaf symptom induction. Entomologia Experimentalis et Applicata 61, 211219.CrossRefGoogle Scholar
della-Giustina, W., Martinez, M. & Bertaux, F. (1989) Bemisia tabaci the new enemy of glasshouse crops in Europe. Phytoma 406, 4852.Google Scholar
Devine, G.J., Harling, Z.K. & Devonshire, A.L. (in press) Resistance to lethal and sub-lethal effects of imidacloprid in nicotine-tolerant Myzus nicotianae and Myzus persicae. Pesticide Science.Google Scholar
Elbert, A., Overbeck, H., Iwaya, K. & Tsuboi, S. (1990) Imidacloprid, a novel systemic nitromethylene analogue insecticide for crop protection. Brighton Crop Protection Conference-Pests and Diseases 1990, 2128.Google Scholar
Elbert, A., Becker, B., Hartwig, J. & Erdelen, C. (1991) Imidacloprid – a new systemic insecticide. Pflanzenschutz Nachrichten Bayer 44, 113135.Google Scholar
Elbert, A., Nauen, R., Cahill, M., Devonshire, A.L., Scan, A., Sone, S. & Steffens, R. (1996) Resistance management with nicotinyl insecticides using imidacloprid as an example. Pflanzenschutz-Nachrichten Bayer 49, 554.Google Scholar
Gill, R.J. (1992) A review of the sweetpotato whitefly in Southern California. Pan-Pacific Entomologist 68, 144152.Google Scholar
Gomez-Menor, J. (1943) Contribucion al conocimiento de los aleyrodidos de Espana (Hem. Homoptera). la nota. Eos. Madrid 19, 173209.Google Scholar
Horowitz, A.R. & Ishaaya, I. (1994) Managing resistance to insect growth regulators in the sweetpotato whitefly (Homoptera: Aleyrodidae). Journal of Economic Entomology 87, 866871.CrossRefGoogle Scholar
International Cotton Advisory Committee (1993) Cotton: world statistics. Bulletin of the International Cotton Advisory Committee 47, (1, Part II) USA.Google Scholar
Koch, W. (1989) A ‘new’ whitefly in the greenhouse. Description of and prospects for control of Bemisia tabaci. Deutscher-Gartenbau 43, 892894.Google Scholar
Kring, J.B., Schuster, D.J., Price, J.F. & Simone, G.W. (1991) Sweetpotato whitefly-vectored geminivirus on tomato in Florida. Plant Disease 75, 1186.Google Scholar
Moreno, R., Garijo, C., Rodriguez, M.D., Garcia, S., Tellez, M.M., Garcia, E. & Rodriguez, M.P. (1994) IPM development on tomato under plastic in the south of Spain. Bulletin IOBC/WPRS 17, 2126.Google Scholar
Nauen, R. (1995) Behaviour modifying effects of low systemic concentrations of imidacloprid on Myzus persicae with special reference to an antifeeding response. Pesticide Science 44, 145153.CrossRefGoogle Scholar
Nauen, R., Strobel, J., Tietjen, K., Otsu, Y., Erdelen, C. & Elbert, A. (in press) Aphicidal activity of imidacloprid against a tobacco feeding strain of Myzus persicae (Homoptera: Aphididae) from Japan closely related to Myzus nicotianae and highly resistant to carbamates and organophosphates. Bulletin of Entomological Research.Google Scholar
Schuster, D.J., Mueller, T.F., Kring, J.B. & Price, J.F. (1990) Relationship of the sweetpotato whitefly to a new tomato fruit disorder in Florida. HortScience 25, 16181620.CrossRefGoogle Scholar
Soloway, S.B., Henry, A.C., Kollmeyer, W.D., Padgett, W.M., Powell, J.E., Roman, S.A., Tieman, C.H., Corey, R.A. & Horne, C.A. (1978) Nitromethylene insecticides. pp. 206227in Geissbühler, H., Brooks, G. T. & Kearney, P. C. (Eds) Advances in Pesticide Science, Part 2. Pergamon Press.Google Scholar