Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-31T23:26:42.896Z Has data issue: false hasContentIssue false

Action of natural phytosanitary products on Bacillus thuringiensis subsp. kurstaki S-1905

Published online by Cambridge University Press:  26 July 2017

E.R. Lozano*
Affiliation:
Technological University Federal of Parana, Câmpus Dois Vizinhos, Brazil
P.M.O.J. Neves
Affiliation:
Technological University Federal of Parana, Câmpus Dois Vizinhos, Brazil
L.F.A. Alves
Affiliation:
Technological University Federal of Parana, Câmpus Dois Vizinhos, Brazil
M. Potrich
Affiliation:
Technological University Federal of Parana, Câmpus Dois Vizinhos, Brazil
G.F.L.T. Vilas-Bôas
Affiliation:
Technological University Federal of Parana, Câmpus Dois Vizinhos, Brazil
R.G. Monnerat
Affiliation:
Technological University Federal of Parana, Câmpus Dois Vizinhos, Brazil
*
*Author for correspondence Phone: (55)46-35368901 Fax: (55)46-35368905 Email: [email protected]

Abstract

The objective of this study was to evaluate the effects of natural phytosanitary products (NPs) on spores and crystals of Bacillus thuringiensis subsp. kurstaki S-1905 (Btk S-1905). For the spore assay, NPs and bacteria were applied in combination and individually. For the combined application, Btk S-1905 + NP mixtures were inoculated on nutrient agar (NA), and for the separate applications, the NPs were spread on NA plates, which were later inoculated with the pathogen. The number of colony-forming units (CFU) per milliliter was quantified after 18 h of incubation. For the crystal protein degradation assay, the Btk S-1905 + NP mixtures were added to the diet of Anticarsia gemmatalis (Lepidoptera: Erebidae), and mortality was evaluated at the following time points: 12, 24, 48, and 72 h. Scanning electron microscopy and agarose gel electrophoresis were carried out. Biogermex and Ecolife® reduced the CFU ml−1 in both combined and separate applications. Biogermex, Ecolife®, and Planta Clean were antagonistic to the action of bacterial toxins, and no product affected the morphology or resulted in the degradation of the crystal proteins. The remaining products evaluated did not reduce the CFU ml−1 and had additive effect when combined with the crystal toxin.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, S.B. & Moraes, S.A. (1998) Quantificação de inóculo de patógenos de insetos. pp. 765797 in Alves, S.B. (Ed.) Controle Microbiano de Insetos. Piracicaba, Fealq.Google Scholar
Benz, G. (1971) Synergism of micro-organisms and chemical insecticides. pp. 327356 in Burges, H.D. & Hussey, N.W. (Eds) Microbial Control of Insects and Mites. London, Academic Press.Google Scholar
Broderick, N.A., Raffa, K.F. & Handelsman, J. (2006) Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proceedings of the National Academy of Sciences of the United States of America 103(41), 1519615199.Google Scholar
Cowan, M.M. (1999) Plant products as antimicrobial agents. Clinical Microbiology Reviews 12(4), 564582.Google Scholar
Dixon, R.A., Dey, P.M. & Lamb, C.J. (1983) Phytoalexins: enzymology and molecular biology. Advances Enzymology and Related Areas Molecular Biology 55, 1136.Google Scholar
El-Moursy, A.A., Sharaby, A. & Awad, H.H. (1993) Some chemical additives to increase the activity spectrum of Bacillus thuringiensis var. kurstaki (Dipel 2X) against the rice moth Corcyra cephalonica . Journal of Islamic Academy of Sciences. 6(2), 149154.Google Scholar
Ferreira, D.F. (2009) Sistema Sisvar para análises estatísticas. Available at http://www.dex.ufla.br/~danielff/programas/sisvar.html (acessado em 02 de jun., 2009).Google Scholar
Genena, A. K., Hense, H., Smânia, J. A. & Souza, S.M.R. (2008) Rosemary (Rosmarinus officinalis) – a study of the composition, antioxidant and antimicrobial activities of extracts obtained with supercritical carbon dioxide. Ciência e Tecnologia de Alimentos. 28(2), 463469.Google Scholar
Gill, S.S. (1995) Mechanism of action of Bacillus thuringiensis toxins. Memórias do Instituto. Oswaldo Cruz. 90, 6974.Google Scholar
Habib, M.E.M. & Andrade, C.F.S. (1998) Bactérias entomopatogênicas. pp. 383427 in Alves, S.B. (Ed.) Controle Microbiano de Insetos. Piracicaba, Fealq.Google Scholar
Hoffmann-Campo, C.B., Oliveira, E.B., & Moscardi, F. (1985) Criação massal da lagarta da soja (Anticarsia gemmatalis), EMBRAPA – Centro Nacional de Pesquisa da Soja, Londrina, Documentos 10, 21.Google Scholar
Ignoffo, C.M., Garcia, C., Kroha, M.J., Fukuda, T. & Couch, T.L. (1981) Laboratory tests to evaluate the potential efficacy of Bacillus thuringiensis var. israelensis for use against mosquitoes. Mosquito News 41, 8593.Google Scholar
Koppenhofer, A.M., Brown, I.M. Gaugler, R. Grewal, P.S., Kaya, H.K. & Klein, M.G. (2000) Synergism of entomopathogenic nematodes and imidacloprid against white grubs: greenhouse and field evaluation. Biological Control 19, 245251.CrossRefGoogle Scholar
Krischik, V.A., Barbosa, P., Reichelderfer, A.F. (1988) Three trophic level interactions: allelochemicals, Manduca sexta (L.), and Bacillus thuringiensis var. kurstaki Berliner. Environmental Entomology 17, 476482.CrossRefGoogle Scholar
Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.Google Scholar
Lecadet, M.M., Chaufaux, J., Ribier, J.E., & Lereclus, D. (1991) Construction of novel Bacillus thuringiensis strains with different insecticidal activities by transduction and transformation. Applied and Environmental Microbiology 58, 840849.Google Scholar
Liu, Y.B., Tabashnir, R.E., Moar, W.J. & Smith, R.A. (1998) Synergism between Bacillus thuringiensis spores and toxins against resistant and susceptible diamond moths (Plutella xylostella). Applied and Environmental Microbiology 64, 13851389.Google Scholar
Lord, J.C. & Undeen, A.H. (1990) Inhibition of the Bacillus thuringiensis var. israelensis toxin by dissolved tannins. Entomological Society of America 19, 15471551.Google Scholar
Medeiros, P.T., Ferreira, M.N., Martins, E.S., Gomes, A.C.M.M., Falcão, R., Dias, J.M.C.S. & Monnerat, R.G. (2005) Seleção e caracterização de estirpes de Bacillus thuringiensis efetivas no controle da traça-das-crucíferas Plutella xylostella . Pesquisa Agropecuária Brasileira 40, 11451148.Google Scholar
Mendes, Z.F., Lima, E.R., Franco, E.S., Oliveira, R.A., Aleixo, G.A.S., Monteiro, V.L., Mota, R.C. & Coelho, M.C.O.C. (2008) Avaliação da atividade antimicrobiana da tintura e pomada de Ruta graveolens (Arruda) sobre bactérias isoladas de feridas cutâneas em cães. Medicina Veterinária 2, 3236.Google Scholar
Monnerat, R.G. & Bravo, A. (2000) Proteínas bioinseticidas produzidas pela bactéria Bacillus thuringiensis: modo de ação e resitência. in Melo, I.S. & Azevedo, J.L. (Eds) Controle Biológico. Jaguariúna, SP, Embrapa Meio Ambiente.Google Scholar
Monnerat, R.G., Batista, A.C., Medeiros, P.T. Martins, E.S. Melatti, V.M., Praça, L.B., Dumas, V.F., Morinaga, C., Demo, C., Gomes, A.C.M., Falcão, R., Siqueira, C.B., Silva-Werneck, J.O., Berry, C. (2007) Screening of Brazilian Bacillus thuringiensis isolates active against Spodoptera frugiperda, Plutella xylostella and Anticarsia gemmatalis . Biological Control 41, 291295.Google Scholar
Motoyama, M.M., Schwan-Estrada, K.R.F., Stangarlin, J.R., Fiore, A.C.G. & Scarpim, C.A. (2003) Efeito antimicrobiano de extrato cítrico sobre Ralstonia solanacearum e Xanthomonas axonopodis pv. Manihotis . Acta Scientiarum Agronomy 25, 509512.Google Scholar
Navon, A., Hade, J.D. & Federici, B.A. (1993) Interactions among Heliothis virescens Larvae, cotton condensed tannin and the cryla(c) 6-endotoxin of Bacillus thuringiensis . Journal of Chemical Ecology 19, 2485 2499.Google Scholar
Neisess, J. (1980) Effect of pH and chlorine concentration on activity of Bacillus thuringiensis tank mixes. Journal Economic Entomology 73, 186188.Google Scholar
Pereira, M.S.V., Rodrigues, O.G., Feijo, F.M.C., Athayder, A.N.C., Lima, E.Q. & Sousa, M. R. (2006) Atividade antimicrobiana de extratos de plantas no semi-Árido paraibano. Agropecuária Científica no Semi-árido 2, 3744.Google Scholar
Petras, S.F. & Casida, J.R.L.E. (1985) Survival of Bacillus thuringiensis spores in soil. Applied and Environmental Microbiology 50, 4961501.Google Scholar
Rajguru, M., Sharma, A.N. & Banerjee, S. (2011) Assessment of plant extracts fortified with Bacillus thuringiensis (Bacillales: Bacillaceae) for management of Spodoptera litura (Lepidoptera: Noctuidae). International Journal of Tropical Insect Science 31, 9297.Google Scholar
Saito, M. L. & Lucchini, F. (1998) Substâncias obtidas de plantas e a procura por praguicidas eficientes e seguros ao meio ambiente. Jaguariúna, EMBRAPA-CNPMA, Documentos, 46p.Google Scholar
Setlow, P. (2003) Spore germination. Current Opinion in Microbiology 6, 550556.Google Scholar
Silva, E.R.L., Alves, L.F.A., Martinelo, L., Formentini, M.A., Marchese, L.P.C., Pinto, F.G.S., Potrich., M. & Neves, P.M.O.J. (2012) Natural phytosanitary products effects on Bacillus thuringiensis subsp. Kurstaki (Berliner). Semina: Ciências Agrárias 33, 28912904.Google Scholar
Silva, S.M.B., Silva-Werneck, J.O., Falcão, R., Gomes, A.C., Fragoso, R.R., Quezado, M.T., Neto, O.B.O., Aguiar, J.B., de Sá, M.F.G., Bravo, A. & Monnerat, R.G. (2004) Characterization of novel Brazilian Bacillus thuringiensis strains active against Spodoptera frugiperda and other insect pests. Journal of Applied Entomology 128, 102107.Google Scholar
Singh, G., Rup, P.J. & Koul, O. (2007) Acute, sublethal and combination effects of azadirachtin and Bacillus thuringiensis toxins on Helicoverpa armigera (Lepidoptera: Noctuidae) larvae. Bulletin of Entomological Research 97, 351357.CrossRefGoogle ScholarPubMed
Thomas, C. & Sparks, A. (1987) Micro Probit 3.0 Analysis for the IBM PC and COMPATIBLES, 1987.Google Scholar
Tran, L.B., Vachon, V., Schwartz, J.L.& Laprade, R. (2001) Differential effects of pH on the pore-Forming properties of Bacillus thuringiensis insecticidal crystal toxins. Applied and Environmental Microbiology 67, 44884494.Google Scholar
Tsuchiya, H., Sato, M., Miyazaki, T., Fujiwara, S., Tanigaki, S., Ohyama, M., Tanaka, T. & Linuma, M. (1996) Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcus aureus . Journal of Ethnopharmacology 50, 2734.CrossRefGoogle ScholarPubMed
Vachon, V., Schwartz, J.L. & Laprade, R. (2006) Influence of the biophysical and biochemical environment on the kinetics of pore formation by Cry toxins. Journal of Invertebrate Pathology 92, 160165.Google Scholar
Who, L.C.P.D. (1999) Bacillus thuringiensis. Geneva, World Health Organization 1999.Google Scholar
Wilson, G.R. & Benoit, T.G. (1993) Alkaline pH activates Bacillus thuringiensis spores. Journal of Invertebrate Pathology 62, 8789.CrossRefGoogle Scholar