Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T10:26:04.150Z Has data issue: false hasContentIssue false

Gene insertion into the avian germline

Published online by Cambridge University Press:  27 February 2018

D. W. Salter
Affiliation:
Department of Microbiology and Public Health, Michigan State University, East Lansing, Michigan 48824
L. B. Crittenden
Affiliation:
USDA-ARS Regional Poultry Research Laboratory, East Lansing, Michigan 48823
Get access

Abstract

Gene insertion into the avian germ line is reviewed. Useful pathogen-derived and animal-derived resistance genes that could be inserted into the avian germ line to convey resistance to pathogens are discussed. Methods of germ line insertion that have been successful in mice are summarized and their possible application in future avian germ line research are described. The successful transfer of retroviral genes into the chicken germ line using replication-competent recombinant retroviruses is summarized and several potentially useful transgenic chicken lines are described. The attempts to use one-round replication-defective retroviral vectors have been complicated by the detection of replication-competent retrovirus in chicks from injected eggs.

Type
Molecular Biology and Genetic Manipulation
Copyright
Copyright © British Society of Animal Production 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Astrin, S. M., Buss, E. G. and Hayward, W. S. 1979. Endogenous viral genes are non-essential in the chicken. Nature 282: 339341.Google Scholar
Bacon, L. D. 1987. Influence of the major histocompatability complex on disease resistance and productivity. Poultry Science 66: 802811.Google Scholar
Baumgartner, J., Ezzat, I. E. and Konecekova, Z. 1986. An attempt at genetic transformation in chickens through cock sperm irradiation. Theoretical and Applied Genetics 72: 264268.CrossRefGoogle ScholarPubMed
Bautsch, V. L. 1986. Genetic background affects integration frequency of ecotropic proviral sequences in the mouse germline. Journal of Virology 60: 693701.Google Scholar
Bosselman, R. A., Hu, S., Souza, L. M. and Nicolson, M. 1988. Retroviruses and avian gene transfer: a basic review. Proceedings of the Thirty-seventh Western Poultry Disease Conference and Molecular Biology Workshop, pp. 193204.Google Scholar
Bumstead, A., Freeman, B. M., Manning, A. C. C. and Howies, K. 1987. Genetic transformation of chickens using irradiated sperm: co-transfer of undesirable genes. Avian Pathology 16: 417424.Google Scholar
Bumstead, A., Messer, L. I., Freeman, B. M. and Manning, A. C. C. 1987. Genetic transformation of chickens using irradiated male gametes. Heredity 88: 2530.Google Scholar
Chourrout, D., Guzomard, R. and Houdebine, L. M. 1986. High efficiency gene transfer in rainbow trout (Salmo gairdineir rich.) by microinjection into egg cytoplasm. Aquaculture 51: 143150.Google Scholar
Church, R. B. 1987. Embryo manipulation and gene transfer in domestic animals. Trends in Biotechnology 5: 1319.Google Scholar
Clark, A. J., Simons, P., Wilmut, I. and Lathe, R. 1987. Pharmaceuticals from transgenic livestock. Trends in Biotechnology 5: 2024.Google Scholar
Crittenden, L. B., Gulvas, G. A. and Eagen, D. A. 1980. Spontaneous production and transmission of subgroup E retroviruses in line 15B chickens. Virology 103: 400406.CrossRefGoogle ScholarPubMed
Crittenden, L. B. 1981. Exogenous and endogenous leukosis virus genes - a review. Avian Pathology 10: 101112.Google Scholar
Crittenden, L. B. and Salter, D. W. 1985. Genetic engineering to improve resistance to viral diseases of poultry: a model for application to livestock improvement. Canadian Journal of Animal Science 65: 553562.CrossRefGoogle Scholar
Crittenden, L. B. and Salter, D. W. 1986. Gene insertion: current progress and long-term goals. Avian Diseases 30: 4346.Google Scholar
Crittenden, L. B., McMahon, S., Halpern, M. S. and Fadly, A. M. 1987. Embryonic infection with the endogenous avian leukosis virus Rous-associated virus-0 alters responses to exogenous avian leukosis virus infection. Journal of Virology 61: 722725.Google Scholar
Crittenden, L. B., Salter, D. W., and Federspiel, M. 1988. Segregation, viral phenotype, and proviral structure of 23 avian leukosis virus inserts in the germ line of chickens. Submitted.CrossRefGoogle Scholar
Crittenden, L. B. and Salter, D. W. 1988. Insertion of retroviral vectors into the avian germline. Proceedings of the Second International Conference on Quantitative Genetics (ed. Weir, B. S., Eisen, E. J., Goodman, M. M. and Namkoong, G.) pp. 207214. Sinauer Associates, Inc., Sunderland, Massachusetts.Google Scholar
Eyal-Giladi, H. 1984. The gradual establishment of cell commitments during the early stages of chick development. Cell Differentiation 14: 245255.Google Scholar
Freeman, B. M. and Messer, L. I. 1985. Genetic manipulation of the domestic fowl - a review. World's Poultry Science Journal 41: 124132.Google Scholar
Freeman, B. M. and Bumstead, N. 1987a. Breeding for disease resistance the prospective role of genetic manipulation. Avian Pathology 16: 353365.CrossRefGoogle ScholarPubMed
Freeman, B. M. and Bumstead, N. 1987b. Transgenic poultry: theory and practice. World's Poultry Science Journal 43: 180189.Google Scholar
Ginsburg, M. and Eyal-Giladi, H. 1987. Primordial germ cells of the young chick blastoderm originate from the central zone of the area pellucida irrespective of the embryo-forming process. Development 101: 209219.CrossRefGoogle Scholar
Gordon, K., Lee, E., Vitale, J. A., Smith, A. E., Westphal, H. and Henninghausen, L. 1987. Production of human tissue plasminogen activator in transgenic mouse milk. Biotechnology 5: 11831187.Google Scholar
Herskowitz, I. 1987. Functional inactivation of genes by dominant negative mutations. Nature 329: 219222.Google Scholar
Hu, S., Bruszewski, J., Nicolson, M., Tseng, J. Hsu, R. and Bosselman, R. 1987. Generation of competent virus in the REV helper cell line C3. Virology 159: 446449.CrossRefGoogle ScholarPubMed
Hughes, S. H., Kosik, E., Fadly, A. M., Salter, D. W., and Crittenden, L. B. 1986. Design of retroviral vectors for the insertion of foreign DNA into the avian germ line. Poultry Science 65: 14591462.CrossRefGoogle ScholarPubMed
Jaenisch, R. 1988. Transgenic animals. Science 240: 14681474.Google Scholar
Jenkins, N. A. and Copeland, N. G. 1985. High frequency germ line acquisition of ecotropic MuLV provirueses in SWR/J hybrid mice. Cell 43: 811819.CrossRefGoogle Scholar
Hammer, R. E., Pursel, V. G., Rexroad, C. E. Jr. Wall, R. J., Bolt, D. J., Ebert, K. M., Palmiter, R. D. and Brinster, R. L. 1985. Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315: 680683.Google Scholar
Lee, M. -R. and Shuman, R. M. 1987. Introduction of a bacterial gene into avian embryos by a recombinant retrovirus vector. Poultry Science 66, Supplement 1: 24 (abstract).Google Scholar
Maclean, N., Penman, D. and Zhu, Z. 1987. Introduction of novel genes into fish. Biotechnology 5: 257261.Google Scholar
Markowitz, D., Goff, S. and Bank, A. 1988. A safe packaging line for gene transfer: separating viral genes on two different Plasmids. Journal of Virology 62: 11201124.CrossRefGoogle ScholarPubMed
Nigon, V. M., Mongin, P., Samarut, J., Verdier, G., Xiao, J. H., Flamant, F., Benchaibi, M., Poncet, D., Savatier, P., Chambonnet, F., Thoraval, P., Faure, C., Langlois, P., Dambrine, G. and Coudert, F. 1986. Research to create, from an avian virus, a vector for gene transfer in birds. In Biomolecular engineering in the european community (ed. Magnien, E.) pp. 406414. Martinus Nijhoff Publishers, Paris.Google Scholar
Ozato, K, Kondoh, H., Inohara, H., Iwamatsu, T., Wakamatsu, Y and Okada, T. S. 1986. Production of transgenic fish: introduction and expresssion of chicken delta-crystallin gene in medaka embryos. Cell Differentiation 19: 237244.Google Scholar
Palmiter, R. D. and Brinster, R. L. 1986. Germ line transformation of mice. Annual Review of Genetics 20: 465499.Google Scholar
Pandey, K. K. and Patchell, M. R. 1982. Genetic transformation in chicken by the use of irradiated male gametes. Molecular and General Genetics 186: 305308.Google Scholar
Pardanaud, L., Buck, C., and Dieterlen-Lievre, F. 1987. Early germ cell segregation and distribution in the quail blastodisc. Cell Differentiation 22: 4760.Google Scholar
Perry, M. M. 1988a. A complete culture system for the chick embryo. Nature 331: 7072.Google Scholar
Perry, M. M. 1988b. Update on gene transfer in chicks. World's Poultry Science Association (abstract).Google Scholar
Petters, R. M. 1987. Transgenic mice in immunological research. Veterinary Immunology and Immunopathology 17: 267268.Google Scholar
Pursel, V. G., Rexroad, C. E. Jr, Bolt, D. J., Miller, K. F., Wall, R. J., Hammer, R. E., Pinkert, C. A., Palmiter, R. D. and Brinster, R. L. 1987. Progress on gene transfer in farm animals. Veterinary Immunology and Immunopathology 17: 303312.CrossRefGoogle ScholarPubMed
Robinson, H. L., Astrin, S. M., Senior, A. M. and Salazar, F. H. 1981. Host susceptibility to endogenous viruses: defective, glycoprotein- expressing proviruses interfere with infections. Journal of Virology 40: 745751.Google Scholar
Rowlett, K. and Simkiss, K. 1987. Explanted embryo culture: in vitro and in ovo techniques for domestic fowl. British Poultry Science 28: 91101.Google Scholar
Rubin, H., Cornelius, A. and Fanshier, L. 1961. The pattern of congenital transmission of an avian leukosis virus. Proceedings of the National Academy of Sciences USA 47: 10581069.Google Scholar
Salter, D. W., Smith, E. J., Hughes, S. H., Wright, S. E., Fadly, A. M., Witter, R. L. and Crittenden, L. B. 1986. Gene insertion into the chicken germ line by retroviruses. Poultry Science 65: 14451458.Google Scholar
Salter, D. W., Smith, E. J., Hughes, S. H., Wright, S. E. and Crittenden, L. B. 1987. Transgenic chickens: insertion of retroviral genes into the chicken germ line. Virology 157: 236240.Google Scholar
Salter, D. W. and Crittenden, L. B. 1988. Artificial insertion of a dominant gene for resistance to avian leukosis virus into the germ line of the chicken. Submitted.Google Scholar
Sanford, J. C. and Johnston, S. A. 1985. The concept of parasite-derived resistance genes from the parasite's own genome. Journal of Theoretical Biology 113: 395405.Google Scholar
Sanford, J. C. 1988. Applying the PDR principle to AIDS. Journal of Theoretical Biology 130: 469480.Google Scholar
Shoffner, R. N. 1986. Perspectives for molecular genetics research and application in poultry. Poultry Science 65: 14891496.Google Scholar
Shoffner, R. N., Otis, J. S., Guise, K. and Synder, L. A. 1987. Improbability of transvected by irradiated spermatozoa in the chicken. Poultry Science 66 supplement 1: 176. (abstract).Google Scholar
Shuman, R. M., Early, G., McBride, M. A., Lee, M. -R., Caldwell, J. and Pauling, K. 1987. Transmission of reticuloendotheliosis virus following infection of early quail embryos. Poultry Science 66, Supplement 1: 41 (abstract).Google Scholar
Shuman, R. M. and Shoffner, R. N. 1986. Gene transfer by avian retroviruses. Poultry Science 65: 14371444.CrossRefGoogle Scholar
Simons, J. P., Wilmut, I., Clark, A. J., Archibald, , Bishop, J. O. and Lathe, R. 1988. Gene transfer into sheep. Biotechnology 6: 179183.Google Scholar
Smith, E. J. 1986 Endogenous avian leukemia viruses. In: Avian Leukosis (ed. deBoer, G. F.) pp. 101120. Martinus Nijhoff Publishing, Boston.CrossRefGoogle ScholarPubMed
Spencer, J. L., Gavora, J. S. and Gowe, R. S.. 1980. Lymphoid leukosis virus natural transmission and neoplastic effects. Cold Spring Harbor Conferance on Cell Proliferation 7: 553564.Google Scholar
Stacey, A., Bateman, J., Choi, T. Mascara, T., Cole, W. and Jaenisch, R. 1988. Perinatal lethal osteogenesis imperfecta in transgenic mice bearing an engineered mutant pro-alphal(I) collagen gene. Nature 332: 131136.Google Scholar
Stewart, C. L., Ruether, U., Garber, C., Vanek, M. and Wagner, E. F. 1986. The expression of retroviral vectors in murine stem cells and transgenic mice. Journal Embryology and Experimental Morphology 97 Supplement: 263275.Google Scholar
Sutasurya, L. A., Yasugi, S. and Mizuno, T. 1983. Appearance of primordial germ cells in young chick blastoderms cultured in vitro . Development. Growth and Differentiation 25: 517521.Google Scholar
Urven, L. E., Erickson, C. A., Abbott, U. K. and McCarrey, J. R. 1988. Analysis of germ line development in the chick embryo using an anti-mouse EC cell antibody. Development 103: 299304.Google Scholar
Varmus, H. 1988. Retroviruses. Science 240: 14271435.Google Scholar
Wagner, E. F., Ruether, U. and Stewart, C. L. 1986. Gene transfer into mouse stem cells. Biotechnology: Potentials and Limitations (ed. Silver, S.) pp. 185196. Dahlem Konferenzen 1986. Springer-Verlag, New York.Google Scholar
Watanabe, S. and Temin, H. 1983. Construction of a helper cell line for avian reticuloendotheliosis virus cloning vectors. Molecular Cellular Biology 3: 22412249.Google Scholar
Wright, S. E. and Bennett, D. D. 1986. Region coding for subgroup specificity of envelope of avian retroviruses does not determine lymphogenicity. Virus Research 6: 173180.Google Scholar
Yoon, S. J., Liu, Z., Kapuscinski, A. R., Hackett, P. B., Faras, A. and Guise, K. S. 1988. Successful gene transfer in fish. Journal of Cellular Biochemistry Supplement 12B: 190 (abstract).Google Scholar
Zamecnik, P. C., Goodchild, J., Taguchi, Y. and Sarin, P. C. 1986. Inhibition of replication and expression of human T-cell lymphotropic virus type III in cultured cells by exogenous synthetic oligonucleotides complementary to viral RNA. Proceedings of the National Academy of Sciences USA 83: 41434146.Google Scholar