Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T11:49:51.456Z Has data issue: false hasContentIssue false

A Methodological approach in La Reunion Island on the value of faecal Near Infrared Reflectance Spectroscopy (NIRS) to assess grazing intake and diet quality of the dairy cow

Published online by Cambridge University Press:  27 February 2018

V. Decruyenaere
Affiliation:
Farming Systems Section, Centre of Agricultural Researches (CRA), 100 rue du Serpont, B-6800 Libramont, Belgium
J.Bony
Affiliation:
National Institute for Agricultural research, Herbivores Research Unit (INRA-URH), Clermont-Ferrand Theix; on secondment to CIRAD, Pole Elevage, Saint Pierre, La Réunion Island, France
P. Grimaud
Affiliation:
Centre International in Agricultural Research for Development (CIRAD-EMVT), Pole Elevage, Saint Pierre, La Réunion Island, France
Ph. Lecomte
Affiliation:
Farming Systems Section, Centre of Agricultural Researches (CRA), 100 rue du Serpont, B-6800 Libramont, Belgium Centre International in Agricultural Research for Development (CIRAD-EMVT), Animal Productions program, Montpellier, France
Get access

Summary

To test the applicability of faecal NIRS to real conditions, an experimental approach was undertaken across several representative dairy farms (N = 30) located ‘La Réunion’ island. From an ongoing survey, this approach consists to characterize the nutritional value of all feeds (grazed fresh forage, hay, silages and supplementary feeds) offered to the lactating herds, and to predict ingested diet from faecal NIRS models previously developed on a large experimental sheep faeces reference data-base.

The methodological objective was to evaluate if such a spectral database could be a useful reference to estimate dairy cow total dry matter intake and diet quality, and so predict the grazed grass intake with reasonable accuracy. According to preliminary results, the NIRS estimated total intake varied between 13.7 and 19 kg DM/day and in vivo organic matter digestibility ranged from 51.7 to 74.8 % with an averaged value of 66 %. The estimated grass intake varied between 0 to nearly 10 kg DM/d. On a spectral basis, dairy cows faeces were quite different from the sheep faeces reference database, with an averaged standardised distance (H) upper of 3.0 (H = 9.1; Hmin = 2.08 – Hmax = 19.22) but predicted intake appeared valid. Indeed, according to the feeding value of diets and lactating cow requirements, the NIRS predicted total intakes were well correlated to the level of milk production. Moreover, for four particular situations, the fresh grass was cut, distributed at the trough and total intake really measured. The correlation between predicted and measured values was high with R2 = 0.94 and standard error of regression = 0.469 kg DM/d. These initial results appear quite encouraging, although the methodology is still exploratory and needs to be validated across a larger set of data. As a low cost and rapid prediction technique, NIRS appears to be a potential methodology that could find many useful developments in the improvement of the knowledge of forage use in tropical conditions.

Resumen

Resumen

Para evaluar la aplicabilidad de NIRS en muestras fecales y en condiciones reales, se llevo a cabo un experimento en varias fincas lecheras (n=30) representativas de la isla “La Reunión”, Francia. Se emplearon encuestas dinámicas, este enfoque consiste en caracterizar el valor nutricional de todos los alimentos (pasto fresco, heno, ensilado y alimentos empleados como suplementos) que son ofrecidos al hato lactante, y predecir la ingestión dietética a partir de un modelo de NIRS con heces desarrollado previamente con una base de datos de referencia basada en numerosos experimentos con borregos.

El objetivo metodológico fue evaluar si tal base de datos (perfil espectral) podría se una referencia útil para la estimación del consumo total de materia seca y calidad de la dieta en vacas lecheras, logrando entonces predecir el consumo de pasto (en pastoreo) con una precisión razonable. De acuerdo con los resultados preliminares, el estimado de NIRS para consumo total vario entre 13.7 y 19 kg MS/d/vaca y la digestibilidad de la materia órganica fluctuó de 51.7 a 74.8% con un valor promedio de 66%. Como resultado, los consumos estimados de pasto variaron de 0 a casi 10 kg MS/d. El espectro resultante de las heces de las vacas lecheras fue muy distinto del espectro de borregos empleado como referencia en la base de datos, con una distancia promedio estandarizada (H) arriba de 3.0 (H=9.1; Hmin=2.08-Hman= 19.22) pero la predicción del consumo fue válida. The hecho, de acuerdo al valor de alimentación de las dietas y los requerimentos de las vacas lactantes, las predicciones del NIRS se encontraron correlacionadas con el nivel de producción de leche. Más aún, en cuatro casos particulares, el pasto fue cortado y servido en el comedero y el consumo medido efectivamente. La correlación entre el consumo predicho y el medido fue alta R2 = 0.94, error estandard de regression = 0.469 kg MS/d. Estos resultados iniciales son promisorios, aunque la metodología todavía se encuentra en etapa exploratoria y necesita ser validada con una base de datos aún mayor. Como una técnica de predicción barata y rápida, el NIRS tiene un gran potencial que podría ser útil en el desarrollo de mejoras en el conocimiento y uso de los forrajes en condiciones tropicales.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Coates, D.B. (2000). Faecal NIRS - What does it offer todays grazier? Tropical Grasslands 34 (3-4): 230239 Google Scholar
Coleman, S.W., Stuth, J.W. and Holloway, J.W. (1989). Monitoring the nutrition of grazing cattle with near-infrared analysis of feces. .XVI International Grassland Congress, Nice, France: pp 881882 Google Scholar
Coleman, S.W. and Murray, I. (1993). The use of near-infrared reflectance spectroscopy to define nutrient of hay by cattle. Animal Feed Science and Technology 44: 237249 CrossRefGoogle Scholar
Coleman, S.W., Lippke, H,. and Gill, M. (1999). Estimating the nutritive potential of forages. In: Nutritional ecology of herbivores. Edited by H-J.G, Jung and G.C., Fahey, Vth International Symposium on the Nutrition of Herbivores. American Society of Animal Science, Savoy, IL, USA pp 647695 Google Scholar
Dardenne, P., Sinnaeve, G., Bollen, L. and Agneessens, R. (1996). NIR-NIT Calibration list, Libramont, Station de Haute Belgique.Google Scholar
Decruyenaere, V.D., Stilmant, Ph., Lecomte, A., Buldgen, and Dardenne, P. (2002). Improvement and indirect validation of the NIRS analysis applied to faeces to measure grass intake in pasture. In: Multi-function Grasslands. Quality Forages, Animal Products and Landscapes. Edited by Durand, J.L., Emile, J.C., Huygue, Ch. and Lemaire, G. Grassland Science in Europe 7: 196197 Google Scholar
Dulphy, J.P., Faverdin, Ph., Micol, D., and Bocquier, F. (1987). Révision du système des Unités d’Encombrement (UE) Bull. Tech. C.R.Z.V. Theix, INRA 70 : 3548.Google Scholar
Wofford, H., Holechek, J.L., Galyean, M.L., Wallace, J.D. and Cardenas, M. (1985). Evaluation of faecal indices to predict cattle diet quality. Journal of. Range Management 38 (5): 450454 Google Scholar