Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-03T02:45:43.421Z Has data issue: false hasContentIssue false

2.1 The Nitrogenous Constituents of Fresh Forages

Published online by Cambridge University Press:  27 February 2018

J. L. Mangan*
Affiliation:
ARC Institute of Animal Physiology, Babraham, Cambridge, CB2 4AT
Get access

Extract

The nitrogenous composition of forage is largely determined by the requirements of plant physiology, with variables such as anatomy, e.g. monocotyledons v. dicotyledons, maturity, fertilizer treatment, climate, light intensity, etc., superimposed. One would therefore expect to find many broad similarities in the composition of plants. Chibnall (1939) recognized this and gave a comprehensive review of early work on metabolism and nitrogenous composition of leaves. Present systems for the assessment of protein requirements of ruminants (e.g. Agricultural Research Council, 1980) require a detailed knowledge of the composition of feedstuffs in terms of rumen degradable and undegradable proteins and of non-protein nitrogenous compounds utilized by rumen microorganisms. It is also apparent that the biological value of protein which bypasses the rumen should be determined. Descriptions in terms of “crude protein” (Kjeldahl N × 6.25) are no longer adequate. The proteins of fresh forages may be considered in 3 main groupings (1) Fraction I leaf protein (2) Fraction 2 proteins and (3) Chloroplast membrane proteins.

Type
2. The Nitrogenous Constituents of Fresh and Conserved Forages
Copyright
Copyright © British Society of Animal Production 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agricultural Research Council. 1980. The Nutrient Requirements of Ruminant Livestock. Commonwealth Agricultural Bureaux, Farnham Royal.Google Scholar
Akazawa, T. and Osmond, C. B. 1976. Structural properties and ribulose bisphosphate carboxylase and oxygenase activity of Fraction 1 protein from a marine alga Halimeda cylindracea . Aust. J. Plant Physiol. 3:93103.Google Scholar
Baker, T. S., Eisenberg, D. and Eiserling, F. 1977. Ribulose bisphosphate carboxylase: A two-layered square shaped molecule of symmetry 422. Science 196: 293295.CrossRefGoogle ScholarPubMed
Bathurst, N. O. and Mitchell, K. J. 1958. The effect of light and temperature on the chemical composition of pasture plants. N.Z. J. agric. Res. 1: 540552.CrossRefGoogle Scholar
Bowes, G., Ogren, W. L. and Hageman, R. H. 1971. Phosphoglycolate production catalysed by ribulose diphosphate carboxylase. Biochem. Biophys. Res. Commun. 45:716722.CrossRefGoogle ScholarPubMed
Byers, M. 1971. Amino acid composition and in vitro digestibility of some protein fractions from three species of leaves of various ages. J. Sci. Fd Agric. 22:242251.CrossRefGoogle Scholar
Chapula, W. 1975. Rumen bypass and protection of proteins and amino acids. J. Dairy Sci. 58: 11981218.Google Scholar
Chibnall, A. C. 1939. Protein Metabolism in the Plant. Yale Univ. Press, Newhaven, Conn. U.S.A. Google Scholar
Chibnall, A. C., Rees, M. W. and Lugg, J. W. H. 1963. The amino acid composition of leaf proteins. J. Sci. Fd Agric. 14: 234239.CrossRefGoogle Scholar
DeJong, D.W. 1977. Recent advances in the chemical composition of tobacco and tobacco smoke. Proc. American Chem. Soc. Symposium (173rd), 78103.Google Scholar
Ely, D. G., Little, C. O., Woolfolk, P. G. and Mitchell, G. E. 1967. Estimation of the extent of conversion of dietary zein to microbial protein in the rumen of lambs. J. Nutr. 91: 314318.CrossRefGoogle ScholarPubMed
Ershoff, B. H., Wildman, S. G. and Kwan-Yuan, P. 1978. Biological evaluation of crystalline Fraction 1 protein from tobacco. Proc. Soc. Exp. Biol. Med. 157(4): 623630.CrossRefGoogle Scholar
Fauconneau, G. 1960. Les fractions azotées et les acides organiques des graminées et des légumineuses. Proc. 8th Int. Grassld Congr. 617620.Google Scholar
Ferguson, W. S. and Terry, R. A. 1954. The fractionation of non-protein nitrogen of grassland herbage. J. Sci. Fd Agric. 5: 515524.CrossRefGoogle Scholar
Food and Agriculture Organization. 1957. Protein requirements. Nutritional Studies No. 16, FAO, Rome.Google Scholar
Givan, A. L. and Criddle, R. S. 1972. Ribulose diphosphate carboxylase from Chlamydomonas reinhardii: purification properties and its mode of synthesis in the cell. Arch. Biochem. Biophys. 149: 153163.CrossRefGoogle Scholar
Gray, J. C. and Kekwick, R. G. O. 1974. An immunological investigation of the structure and function of ribulose-1, 5-bisphosphate carboxylase. Eur. J. Biochem. 44:481489.CrossRefGoogle ScholarPubMed
Hall, F. J., West, J. and Coleman, G. S. 1974. Fine structural studies on the digestion of chloro-plasts in the rumen ciliate Entodinium caudatum. Tissue and Cell 6:243253.CrossRefGoogle Scholar
Hegarty, M. P. and Petersen, P. J. 1973. In Chemistry and Biochemistry of Herbage (ed. Butler, G. W. and Bailey, R. W.), Vol. 1, pp. 162. Academic Press, London.Google Scholar
Herrmann, F. H., Börner, Th. and Hageman, R. H. 1980. In Chloroplasts (ed. Reinert, J.), pp. 147177. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Jamieson, N. D. 1959. Nitrate reduction in the rumen of grazing sheep. N.Z. J. agric. Res. 2: 96106.CrossRefGoogle Scholar
Kawashima, N. 1969. Comparative studies on Fraction 1 protein from spinach and tobacco leaves. Plant Celt Physiol. 10:3139.Google Scholar
KawAshima, N. and Wildman, S. G. 1970. Fraction 1 protein. Ann. Rev. Plant Physiol. 21: 325358.CrossRefGoogle Scholar
Kuehn, G. D. and McFadden, B. A. 1969. Ribulose-1, 5-diphosphate carboxylase from Hydro-genomonas eutropha and H. facilis II. Molecular weight subunits composition and sulphydryl groups. Biochemistry 8: 24032408.CrossRefGoogle Scholar
Lamport, D. T. A. and Northcote, D. H. 1960. Hydroxyproline in primary cell walls of higher plants. Nature 188: 665666.CrossRefGoogle Scholar
Lewis, D. 1951. Metabolism of nitrate and nitrite in the rumen. 1. The reduction of nitrate in the rumen of sheep. Biochem. J. 48: 175180.CrossRefGoogle Scholar
Lewis, D. 1955. Amino acid metabolism in the rumen of the sheep. Br. J. Nutr. 9: 215230.CrossRefGoogle ScholarPubMed
Lewis, T. R. and Emery, R. S. 1962. Relative de-amination rates of amino acids by rumen microorganisms. J. Dairy Sci. 44: 765768.CrossRefGoogle Scholar
Lexander, K., Carlsson, R., Schalen, V., Simonsson, A. and Lundeborg, T. 1970. Quantities and quality of leaf protein concentrates from wild species and crop species grown under controlled conditions. Ann. Appl. Biol. 66: 193216.CrossRefGoogle Scholar
Lyttleton, J. W. 1973. Proteins and nucleic acids. In Chemistry and Biochemistry of Herbage (ed. Butler, G. W. and Bailey, R. W.), Vol. 1, pp. 63103. Academic Press, London.Google Scholar
Lyttleton, J. W. and Ts'O, P. O. P. 1958. The localization of Fraction 1 protein of green leaves in the chloroplasts. Arch. Biochem. Biophys. 73:120126.CrossRefGoogle ScholarPubMed
McArthur, J. M. and Miltimore, J. E. 1966. Pasture bloat and the role of 18-S protein. Proc. Int. Grassld Congr. 158521.Google Scholar
McFadden, B. A., Lord, J. M., Rowe, A. and Dilks, S. 1975. Composition, quaternary structure and catalytic properties of D-ribulose-1, 5-bisphosphate carboxylase from Euglena gracilis. Eur. J. Biochem. 54: 195206.CrossRefGoogle Scholar
Mahadevan, S., Erfle, J. D. and Saur, F. D. 1980. Degradation of soluble and insoluble proteins by Bacteroides amylophilus and by rumen microorganisms. J. Anim. Sci. 510: 723727.CrossRefGoogle Scholar
Mangan, J. L. 1972. Quantitative studies on nitrogen metabolism in the bovine rumen. The rate of proteolysis of casein and ovalbumin and the release and metabolism of the amino acids. Br. J. Nutr. 27: 261283.CrossRefGoogle ScholarPubMed
Mangan, J. L. and West, Janet 1977. Ruminai digestion of chloroplasts and the protection of protein by glutaraldehyde treatment. J. agric. Sci., Camb. 89: 315.CrossRefGoogle Scholar
Marchalonis, J. J. and Weltman, J. W. 1971. Relatedness among proteins. A new method of estimation and its application to immunoglobulins. Cотр. Biochem. Physiol. 38:609625.Google Scholar
Miflin, B. J. and Lea, P. J. 1977. Amino acid metabolism. Ann. Rev. Plant Physiol. 28: 299329.CrossRefGoogle Scholar
Miller, K. R. 1979. The photosynthetic membrane. In Molecules to Living Cells (ed. Hanawell, P. C.), pp. 170179. Scientific American Publication.Google Scholar
Miltimore, J. E., McArthur, J. M., Goplen, B. P., Majak, W. and Howarth, R. E. 1974. Variability of Fraction 1 protein and hereditability estimates for Fraction 1 protein and total phenolic constituents in alfalfa. Agronomy J. 66: 384386.CrossRefGoogle Scholar
Minson, D. J. 1981. Nutritional differences between tropical and temperate pastures. In Grazing Animals (ed. Morley, F. H. W.), Elsevier Scientific Publishing Co., Amsterdam.Google Scholar
Moon, K. E. and Thompson, E. O. P. 1969. Sub-units from reduced and S-carboxymethylated ribulose diphosphate carboxylase (Fraction 1 protein). Aust. J. biol. Sci. 22: 463470.CrossRefGoogle Scholar
Neurath, H. and Bailey, K. 1953. The Proteins. Academic Press, New York.Google Scholar
Nugent, J. H. A. 1979. Proteolysis in the rumen. PhD Thesis, Univ. Cambridge.Google Scholar
Nugent, J. H. A. and Mangan, J. L. 1978. Rumen proteolysis of fraction 1 leaf protein, casein and bovine serum albumin. Proc. Nutr. Soc. 37: 48A.Google Scholar
Nugent, J. H. A. and Mangan, J. L. 1981. Characteristics of the rumen proteolysis of fraction 1 (18S) leaf protein from lucerne (Medicago sativa L.). Br. J. Nutr. 46:3958.CrossRefGoogle ScholarPubMed
Pate, J. S. 1971. Movement of nitrogenous solutes in plants in Nitrogen-15 in soil-plant studies. Vienna, IAEA.Google Scholar
Ridley, S. M., Thornber, J. P. and Bailey, J. L. 1967. A study of the water soluble proteins of spinach beet chloroplasts with special reference to Fraction 1 protein. Biochem. Biophys. Acta. 140: 6279.Google Scholar
Rutner, A. C. and Lane, M. D. 1967. Nonidentical subunits ribulose diphosphate-carboxylase. Biochem. Biophys. Res. Commun. 28: 531537.CrossRefGoogle ScholarPubMed
Slack, C. R. and Hatch, M. D. 1967. Comparative studies on the activity of carboxylase and other enzymes in relation to the new pathway of photo-synthetic carbon dioxide fixation in tropical grasses. Biochem. J. 103:660665.CrossRefGoogle Scholar
Smith, R. H. and McAllan, A. B. 1971. Nucleic acid metabolism in the rumen. III. Amounts of nucleic acids and total and ammonia-N in digesta from the rumen, duodenum and ileum of the calf. Br. J. Nutr. 25: 181190.CrossRefGoogle Scholar
Steer, M. W., Gunning, B. E. S., Graham, T. A. and Carr, D. J. 1968. Isolation, properties and structure of Fraction 1 protein from Avena sativa L. Planta. 79: 254267.CrossRefGoogle ScholarPubMed
Sugiyama, T., Ito, T. and Akazawa, T. 1971. Subunit structure of ribulose-1, 5-diphosphate carboxylase from Chlorella ellipsoidea . Biochemistry 10: 34063411.CrossRefGoogle ScholarPubMed
Tabita, F. R. and McFadden, B. A. 1974. D-ribulose-1, 5-diphosphate carboxylase from Rhodospirillum rubrum II. Quaternary structure composition, catalytic and immunological properties. J. Biol. Chem. 249: 34593464.CrossRefGoogle ScholarPubMed
Thornber, J. P., Gregary, R. P. F., Smith, C. A. and Bailey, J. L. 1967. Studies on the nature of the chloroplast lamellae. I. Preparation and some properties of two chlorophyll-protein complexes. Biochemistry 6: 391396.CrossRefGoogle ScholarPubMed
Thornber, J. P., Stewart, J. C., Hatton, M. W. C. and Leggett-Bailey, J. 1967. Nature of chloroplast lamellae. II. Chemical composition and further physical properties of two chlorophyll-protein complexes. Biochemistry 6: 2006-2014.Google ScholarPubMed
Trown, P. W. 1965. An improved method for the isolation of carboxy-dismutase. Probable identity with Fraction 1 protein and the protein moiety of protochlorophyll halochrome. Biochemistry 4: 908918.CrossRefGoogle Scholar
Ulyatt, M. J. 1981. The feeding value of temperate pastures. In Grazing Animals (ed. Morley, F. H. W.), Elsevier Scientific Publishing Co., Amsterdam.Google Scholar
Wildman, S. G. and Bonner, J. 1947. The protein of green leaves. I. Isolation, enzymatic properties and auxin content of spinach cytoplasmic proteins. Arch. Biochem. 14: 381413.Google Scholar
Willison, J. H. M. and Davey, M. R. 1976. Fraction 1 protein crystals in chloroplasts of isolated tobacco leaf protoplasts. A thin section and freeze etch morphological study. J. Ultrastruct. Res. 55: 303311.CrossRefGoogle ScholarPubMed