Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T07:58:47.311Z Has data issue: false hasContentIssue false

Zinc homeostasis in man: studies using a new stable isotope-dilution technique

Published online by Cambridge University Press:  09 March 2007

M. J. Jackson
Affiliation:
Department of Medicine, University College London, The Rayne Institute, University Street, London WC1E 6JJ
D. A. Jones
Affiliation:
Department of Medicine, University College London, The Rayne Institute, University Street, London WC1E 6JJ
R. H. T. Edwards
Affiliation:
Department of Medicine, University College London, The Rayne Institute, University Street, London WC1E 6JJ
I. G. Swainbank
Affiliation:
Institute of Geological Sciences, 64 Gray's Inn Road, London WCIX 8NG
M. L. Coleman
Affiliation:
Institute of Geological Sciences, 64 Gray's Inn Road, London WCIX 8NG
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A new method has been developed for the study of zinc metabolism in man using the stable isotope 67Zn. The technique involves intravenous infusion of the isotope followed by measurements of the plasma and faecal enrichments over a period of days.

2. A procedure for the analysis of Zn isotopes in plasma and faeces is described which requires the separation of Zn from other elements using the chelator dithizone before analysis by thermal-ionization mass spectrometry.

3. The stable isotope technique has been used in conjunction with a metabolic balance study to obtain measurements of Zn absorption and gastrointestinal secretion in a normal subject. Preliminary measurements of the size of the exchangeable pool of Zn have been made as have estimates of the rates of plasma and whole-body Zn turnover.

4. Following an increase in dietary Zn the body appeared to respond in two ways. The gastrointestinal secretion of Zn increased immediately, but only by a relatively small amount. The absorption of Zn initially increased in proportion to the increase in dietary levels but then decreased within 4 d by an amount sufficient to restore Zn balance.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1984

References

Aamodt, R. L., Rumble, W. F., Johnston, G. S. & Henkin, R. I. (1979). American Journal of Clinical Nutrition 32, 559569.CrossRefGoogle Scholar
Bainbridge, K. T. & Nier, O. A. (1950). National Research Council Nuclear Energy Series, Preliminary Report no. 9.Google Scholar
Cortzias, G. C., Borg, D. C. & Selleck, B. (1962). American Journal of Physiology 202, 359363.CrossRefGoogle Scholar
Cousins, R. J. (1979). Nutrition Reviews 37, 97103.CrossRefGoogle Scholar
Dodson, M. H. (1969). Journal of Scientific Instrumentation 2, 490498.CrossRefGoogle Scholar
Edwards, R. H. T., Wiles, C. M., Round, J. M., Jackson, M. J. & Young, A. (1979). Muscle and Nerve 2, 223228.CrossRefGoogle Scholar
Elmes, M. E., Golden, M. K. & Love, A. H. G. (1976). Quarterly Journal of Medicine 45, 696697.Google Scholar
Evans, G. W., Johnson, E. C. & Johnson, P. E. (1979). Journal of Nutrition 109, 12581264.CrossRefGoogle Scholar
Jackson, M. J. (1977). Journal of Clinical Pathology 30, 284287.CrossRefGoogle Scholar
Jackson, M. J. & Edwards, R. H. T. (1981). Muscle and Nerve 5, 661663.CrossRefGoogle Scholar
Jackson, M. J., Jones, D. A. & Edwards, R. H. T. (1981). British Journal of Nutrition 46, 1527.CrossRefGoogle Scholar
Jackson, M. J., Jones, D. A. & Lilburn, M. F. (1980). Journal of Physiology (London) 305, 5354P.Google Scholar
Janghorbani, M., Ting, B. T. G., Istfan, N. W. & Young, V. R. (1981). American Journal of Clinical Nutrition 34, 581591.CrossRefGoogle Scholar
Janghorbani, M. & Young, V. R. (1980). American Journal of Clinical Nutrition 33, 20212030.CrossRefGoogle Scholar
King, J. C., Reynolds, W. L. & Morgen, S. (1978). American Journal of Clinical Nutrition 31, 11981203.CrossRefGoogle Scholar
Lombeck, I., Schnippering, H. G., Ritzl, F., Feinendegen, L. E. & Bremer, H. J. (1975). Lancet i, 855.CrossRefGoogle Scholar
McCance, R. A. & Widdowson, E. M. (1942). Biochemical Journal 36, 692696.CrossRefGoogle Scholar
Methfessel, A. H. & Spencer, H. (1973). Journal of Applied Physiology 34, 6367.CrossRefGoogle Scholar
Molokhia, M., Sturniolo, G., Shields, R. & Turnberg, L. A. (1980). American Journal of Clinical Nutrition 33, 881886.CrossRefGoogle Scholar
Moynahan, E. J. (1974). Lancet ii, 399400.CrossRefGoogle Scholar
Sandstrom, B., Arvidsson, B., Cederblad, A. & Bjorn–Rasmussen, E. (1980). American Journal of Clinical Nutrition 33, 739745.CrossRefGoogle Scholar
Turnland, J. R., Michel, M. C., Keyes, B. A., King, J. C. & Margen, S. (1982). American Journal of Clinical Nutrition 35, 10331040.CrossRefGoogle Scholar
Verdier, E. T., Steyn, W. J. A. & Eve, D. J. (1957). Agricultural and Food Chemistry 5, 354360.CrossRefGoogle Scholar
Weigand, E. & Kirchgessner, M. (1978). Nutrition and Metabolism 22, 101112.CrossRefGoogle Scholar
Weisman, K., Wadskov, S., Mikkelsen, H. I., Knudsen, L., Christensen, K. C. & Storgaard, L. (1978). Archives of Dermatology 114, 15091511.CrossRefGoogle Scholar