Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T00:41:16.627Z Has data issue: false hasContentIssue false

Wheat bran increases high-density-lipoprotein cholesterol in the rat

Published online by Cambridge University Press:  09 March 2007

N.-G. Asp
Affiliation:
Department of Food Chemistry, Chemical Centre, University of Lund, Lund, Sweden
H. G. Bauer
Affiliation:
Department of Surgery, University Hospital, Lund, Sweden
P. Nilsson-Ehle
Affiliation:
Department of Clinical Chemistry, University Hospital, Lund, Sweden
Margareta Nyman
Affiliation:
Department of Nutrition, Chemical Centre, University of Lund, Lund, Sweden
R. Öste
Affiliation:
Department of Nutrition, Chemical Centre, University of Lund, Lund, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Five groups of male Sprague Dawley rats were given for 6 months a diet with high protein and fat contents but a very low dietary fibre content (group B), and this diet mixed with (g/kg) 50 low-methoxyl pectin (groupL), 50 high-methoxyl pectin (group H), 50 guar gum (group G) and 200 wheat bran (group WB, corresponding to 100 wheat fibre) respectively.

2. The weight increment was significantly lower in group G than in the other groups. Assuming no energy value of the dietary fibre, the weight increment (/kJ) was the same in groups B, L and H, lower in group G and higher in group WB, indicating that a proportion of the bran fibre might in fact be available as a source of energy.

3. Wheat bran increased total plasma cholesterol and high-density-lipoprotein cholesterol after 6, 12 and 26 weeks. Group G had significantly lowered plasma cholesterol after 12 weeks. Pectin on the other hand did not significantly influence total or HDL-cholesterol levels. It is therefore possible that the plasma cholesterol lowering effect of pectin previously demonstrated in the rat is dependent on the presence of significant amounts of dietary cholesterol as our diets did not contain added cholesterol. Plasma triglycerides decreased with age but were similar in all groups.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1981

References

Abdulla, M., Andersson, I., Asp, N-G., Berthelsen, K., Birkhed, D., Dencker, I., Johansson, C-G., Jägerstad, M., Kolar, K., Nair, B., Nilsson-Ehle, P., Nordén, Å., Rassner, S., Åkesson, B. & Öckerman, P-A. (1981). Am. J. clin. Nutr. (In the Press).Google Scholar
Asp, N-G. & Johansson, C-G. (1981). In Analysis of Dietary Fiber in Human Foods, p. 173 [James, W. P. T. and Theander, O., editors]. New York: Marcel & Dekker.Google Scholar
Bachmann, E., Weber, E., Post, M. & Zbinden, G. (1978). Pharmacology. 17, 39.CrossRefGoogle Scholar
Bremner, W. F., Brooks, P. M., Third, J. L. H. C. & Lawrie, T. D. V. (1975). Br. med. J. ii, 574.CrossRefGoogle Scholar
Burkitt, D. P. & Trowell, H. C. (1975). Refined Carbohydrate Foods and Disease. London: Academic Press.Google Scholar
Bylund, M. & Donetzhuber, A. (1968). Sv. Papperstidn. 15, 505.Google Scholar
Danielsson, B., Ekman, R., Fex, G., Johansson, B. G., Kristensson, H., Nilsson-Ehle, P. & Wadstein, J. (1978). Scand. J. clin. Lab. Invest. 38, 113.CrossRefGoogle Scholar
Friedewald, W. T., Levy, R. I. & Fredrickson, D. S. (1972). Clin. Chem. 18, 499.CrossRefGoogle Scholar
Gordon, T., Castelli, W. P., Hjortland, M. C., Karmel, M. B. & Dawber, T. R. (1977). Am. J. Med. 62, 707.CrossRefGoogle Scholar
Harmuth-Hoene, A. E., Jakubick, W. R. & Schelenz, R. (1978). Nutr. Metab. 22, 32.CrossRefGoogle Scholar
Jenkins, D. J. A., Leeds, A. R., Gassult, M. A., Wolever, M. S., Goff, D. F., Alberti, K. G. M. M. & Hockaday, T. D. R. (1976). Lancet ii, 172.CrossRefGoogle Scholar
Kritchevsky, D. (1978). Am. J. clin. Nutr. 31, S65.CrossRefGoogle Scholar
Morris, J. N., Marr, J. W. & Clayton, D. G. (1977). Br. med. J. ii, 1301.Google Scholar
Nilsson-Ehle, P., Garfinkel, A. S. & Schotz, M. C. (1980). A. Rev. Biochem. 49, 667.CrossRefGoogle Scholar
O'Moore, R. R., Flanagan, M., McGill, A. R., Wright, E. A., Little, C. & Weir, D. G. (1978). Br. med. J. i, 1213.CrossRefGoogle Scholar
Roeschlau, P., Bernt, E. & Gruber, W. (1974). Z. Klin. Chem. Klin. Biochem. 12, 226.Google Scholar
Theander, O. & Åman, P. (1979). Swedish J. agric. Res. 9, 97.Google Scholar
Truswell, A. S. & Kay, R. M. (1976). Lancet i, 367.CrossRefGoogle Scholar
Tuomilehto, J., Huttunen, J., Voutilainen, E. & Vinni, S. (1979). Vår Föda 31, suppl. 3, 217.Google Scholar
Wahlefeld, A. W. (1974). In Methods of Enzymatic Hydrolysis, p. 1831 [Bergmayer, H. U., editor]. New York: Academic Press.CrossRefGoogle Scholar
Walker, A. R. P. & Arvidson, U. B. (1954). J. clin. Invest. 33, 1366.CrossRefGoogle Scholar