Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T22:07:25.987Z Has data issue: false hasContentIssue false

Vitamin K status in human tissues: tissue-specific accumulation of phylloquinone and menaquinone-4

Published online by Cambridge University Press:  09 March 2007

H. H. W. Thijssen
Affiliation:
Department of Pharmacology, Cardiovascular Research Institute, University of Limburg, Maastricht, The, Netherlands
M. J. Drittij-Reijnders-
Affiliation:
Department of Pharmacology, Cardiovascular Research Institute, University of Limburg, Maastricht, The, Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We measured the vitamin K status in postmortem human tissues (brain, heart, kidney, liver, lung, pancreas) to see if there is a tissue-specific distribution pattern. Phylloquinone (K1,) was recovered in all tissues with relatively high levels in liver, heart and pancreas (medians, 10·6 (4·8), 9·3 (4·2), 28·4 (12·8) pmol(ng)/g wet weight tissue); low levels (< 2 pmol/g) were found in brain, kidney and lung. Menaquinone-4 (MK-4) was recovered from most of the tissues; its levels exceeded the K1 levels in brain and kidney (median, 2·8 ng/g) and equalled K1 in pancreas. Liver, heart and lung were low in MK–4. The higher menaquinones, MK-6–11, were recovered in the liver samples (n 6), traces of MK-6–9 were found in some of the heart and pancreas samples. The results show that in man there are tissue-specific, vitamin-K distribution patterns comparable to those in the rat. Furthermore, the accumulation of vitamin K in heart, brain and pancreas suggests a hitherto unrecognized physiological function of this vitamin.

Type
Vitamin K distribution in man
Copyright
Copyright © The Nutrition Society 1996

References

REFERENCES

Billeter, M., Bolliger, W. & Martius, C. (1964). Untersuchungen über die Umwandlung von verfutterten K-Vitaminen durch Austausch der Seitenkette und die Rolle der Darmbakterien hierbei (The conversion of dietary K-vitamins by side-chain exchange. The role of the gut flora). Biochemische Zeitschrft 340, 290303.Google Scholar
Conly, J. M. & Stein, K. (1992). The production of menaquinones (vitamin K2) by intestinal bacteria and their role in maintaining coagulation homeostasis. Progress in Food and Nutrition Science 16, 307343.Google ScholarPubMed
Fair, D. S., Marlar, R. A. & Levin, E. G. (1986). Human endothelial cells synthesize protein S. Blood 67, 11681171.CrossRefGoogle ScholarPubMed
Fraser, J. D. & Price, P. A. (1988). Lung, heart and kidney express high levels of mRNA for the vitamin K-dependent matrix GLA protein. Journal of Biological Chemistry 263, 1103311036.CrossRefGoogle ScholarPubMed
Friedman, P. A. & Smith, M. W. (1977). A survey of rat tissues for phylloquinone epoxidase activity. Biochemical Pharmacology 26, 804805.CrossRefGoogle ScholarPubMed
Gallop, P. M., Lian, J. B. & Hauschka, P. V. (1980). Carboxylated calcium-binding proteins and vitamin K. New England Journal of Medicine 302, 14601466.CrossRefGoogle ScholarPubMed
Hirauchi, K., Sakano, I., Notsumoto, S., Nagaoka, T., Morimoto, A., Fujimoto, K., Masuda, S. & Suzuki, Y. (1989). Measurement of K vitamins in animal tissues by high-performance liquid chromatography with fluorimetric detection. Journal of Chromatography 497, 131137.CrossRefGoogle ScholarPubMed
Hodges, S. J., Bejui, J., Leclercq, M. & Delmas, P. D. (1993). Detection and measurement of vitamins K1, and K2 in human cortical and trabecula bone. Journal of Bone and Mineral Research 8, 10051008.CrossRefGoogle Scholar
Kindberg, C., Suttie, J. W., Uchida, K., Hirauchi, K. & Nakao, H. (1987). Menaquinone production and utilization in germ-free rats after inoculation with specific organisms. Journal of Nutrition 117, 10321035.CrossRefGoogle ScholarPubMed
Manfioletti, G., Brancolini, C., Avanzi, G. & Schneider, C. (1993). The protein encoded by a growth arrest-specific gene (gas6) is a new member of the vitamin K-dependent proteins related to protein S, a negative coregulator in the blood coagulation cascade. Molecular Cell Biology 13, 49764985.Google ScholarPubMed
Saupe, J., Shearer, M. J. & Kohlmeier, M. (1993). Phylloquinone transport and its influence on γ carboxyglutamate residues of osteocalcin in patients on maintenance hemodialysis. American Journal of Clinical Nutrition 58, 204208.CrossRefGoogle ScholarPubMed
Shearer, M. J., McCarthy, P. T., Crampton, O. E. & Mattock, M. B. (1988). The assessment of human vitamin K status from tissue measurements. In Current Advances in Vitamin K Reseurch, pp. 437452 [ Suttie, J. W., editor] New York: Elsevier.Google Scholar
Shirahata, A., Nakamura, T. & Ariyoshi, N. (1991). Vitamin K1 and K2 contents in blood, stool, and liver tissues of neonates and young infants. In Perinatal Thrombosis and Hemostasis, pp. 213223 [Suzuki, S.Hathaway, W. E.Bonnar, J. and Sutor, A. H., editors]. Tokyo: Springer Verlag.CrossRefGoogle Scholar
Thijssen, H. H. W. & Baars, L. G. M. (1991). Tissue distribution of selective warfarin binding sites in the rat. Biochemical Pharmacology 42, 21812186.CrossRefGoogle ScholarPubMed
Thijssen, H. H. W. & Drittij-Reijnders, M. J. (1993). Vitamin K metabolism and vitamin K, status in human liver samples, a search for interindividual differences in warfarin sensitivity. British Journal of Haemutology 84, 681685.CrossRefGoogle ScholarPubMed
Thijssen, H. H. W. & Drittij-Reijnders, M. J. (1994). Vitamin K distribution in rat tissues: dietary phylloquinone is a source of tissue menaquinone-4. British Journal of Nutrition 72, 415425.CrossRefGoogle ScholarPubMed
Usui, Y., Nishimura, N., Kobayashi, N., Okanone, T., Kimoto, M. & Ozawa, K. (1989). Measurement of vitamin K in human liver by gradient elution high-performance liquid chromatography using platinum-black catalyst reduction and fluorimetric detection. Journal of Chromatography 489, 291301.CrossRefGoogle ScholarPubMed
Vermeer, C. (1990). Gamma-carboxy glutamate-containing proteins and the vitamin K-dependent carboxylase. Biochemical Journal 266, 625636.CrossRefGoogle Scholar