Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T00:45:59.861Z Has data issue: false hasContentIssue false

Vitamin E and stress

1. Dietary unsaturated fatty acid stress and the metabolism of α-tocopherol in the rat

Published online by Cambridge University Press:  09 March 2007

J. Green
Affiliation:
Walton Oaks Experimental Station, Vitamins Ltd, Tadworth, Surrey
A. T. Diplock
Affiliation:
Walton Oaks Experimental Station, Vitamins Ltd, Tadworth, Surrey
J. Bunyan
Affiliation:
Walton Oaks Experimental Station, Vitamins Ltd, Tadworth, Surrey
D. Mchale
Affiliation:
Walton Oaks Experimental Station, Vitamins Ltd, Tadworth, Surrey
I. R. Muthy
Affiliation:
Walton Oaks Experimental Station, Vitamins Ltd, Tadworth, Surrey
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A critical analysis of the biological antioxidant theory of vitamin E function has been made and the implications of the theory have been tested.

2. When small amounts of [5-Me-14C]α-tocopherol were present in lipid systems subject to autoxidation in vitro, it was found that, whether the tocopherol was the sole antioxidant or was in synergistic combination with a secondary antioxidant (ascorbic acid), peroxidation did not occur without concomitant destruction of the tocopherol. This was so, whether a simple fat substrate or a liver homogenate (subject to catalysis) was used. The decomposition of tocopherol took place even when the secondary antioxidant was in large excess, as would occur under physiological conditions in the vitamin E-deficient animal, and accelerated as the induction period neared its end.

3. When [5-Me-14C,3H]α-tocopherol and ascorbic acid were used as a synergistic antioxidant couple in vitro, tocopherol recovered from the peroxidizing system always had the same isotopic ratio as the starting material. This means that regeneration of tocopherol by the secondary antioxidant cannot involve, as an intermediate, a tocopherol carbon radical formed by loss of hydrogen from the 5-methyl group. Such radicals probably dimerize before they can be regenerated. The same result was found when doubly labelled α-tocopherol was given to the rat and recovered later from its tissues.

4. In a series of experiments, rats were rigorously depleted of vitamin E for periods up to 7 months and then given as little as 50 μg [14C]D-α-tocopherol. They were then given, either by stomach tube daily or by dietary addition, large amounts of methyl linoleate or vitamin E-free polyunsaturated fatty acid methyl esters prepared from cod-liver oil and compared with controls given methyl oleate for up to 31 days. When the possibility of interaction between the lipid and tocopherol in the gut was eliminated, analyses of liver, kidney, testis, adrenal, adipose tissue, whole carcass and faeces showed that there was no effect of the polyunsaturated fatty acids on either the metabolism or recovery of [14C]α-tocopherol in any of the animals.

5. When interaction between the administered fatty acid esters and tocopherol in the gut was allowed to take place, a marked destruction of [14C]α-tocopherol in the tissues was observed in animals given the polyunsaturated esters. The importance of oxidative destruction of tocopherol in the gut before absorption was demonstrated in a nutritional trial, in which cod-liver oil and lard were compared and the degrees of resistance of rats' erythrocytes to dialuric acid-induced haemolysis was used as an index of vitamin E depletion.

6. Similar experiments with [14Cα-tocopherol in weanling rats given large amounts of cod-liver oil methyl esters also showed little effect. Although there was a suggestion that prolonged feeding of partly peroxidized polyunsaturated esters could lead to a slight depression of tissue tocopherol concentrations, no significant differences were usually obtained.

7. Fourteen-day-old rats were given a vitamin E-deficient diet and received three weekly doses of 0.5 mg α-tocophcryl acetate. The dosage was stopped, the rats were then given a deficient diet containing 4% of either vitamin E-free linseed oil fatty acids or oleic acid, and the rate of their tocopherol depletion was measured by the erythrocyte haemolysis test. No effect of the polyunsaturated fatty acids was found. Nor was there any effect on the concentrations of ‘secondary antioxidants’ (glutathione and ascorbic acid) in liver, kidney, testis, muscle or adipose tissue.

8. The results of the experiments in vivo contrast strongly with those in vitro. They lead to the conclusion that lipid peroxidation, if it occurs in the living animal, is irrelevant to the problem of vitamin E function. This conclusion has been substantiated by a critical review of the literature on the quantitative aspects of the vitamin E-dietary fat relationship.

9. The effects of dietary fat stress in vitamin E-deficient animals are, we believe, due to two causes: (1) destruction of tocopherol in the diet or in the gastro-intestinal tract of the animal, and (2) the existence of an increased requirement for vitamin E for the metabolism of certain long-chain fatty acids. The specific effects of certain of these substances in producing or accelerating some vitamin E deficiency diseases may be related to the toxic states known to be induced in vitamin E-deficient animals by other stress factors.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1967

References

Acharya, U. S. & Jayaraman, J. (1963). Int. Z. VitamForsch. 33, 457.Google Scholar
Adams, H. E. & Powers, P. O. (1944). Ind. Engng Chem. ind. Edn 36, 1124.CrossRefGoogle Scholar
Bieri, J. G. & Andrews, E. L. (1963). J. Am. Oil Chem. Soc. 40, 365.CrossRefGoogle Scholar
Blaxter, K. L. (1957). Vet Rec. 69, 1150.Google Scholar
Blaxter, K. L., Brown, F. & Macdonald, A. M. (1953). Br. J. Nutr. 7, 287.CrossRefGoogle Scholar
British Standards Institution (1958). British Standard 684: 1958. Methods of Analysis of Oils and Fats. London: British Standards Institution.Google Scholar
Budowski, P. & Mokadi, S. (1961). Biochim. biophys. Acta 52, 609.Google Scholar
Bunyan, J., Diplock, A. T., Edwin, E. E. & Green, J. (1962). Br. J. Nutr. 16, 519.CrossRefGoogle Scholar
Bunyan, J., Green, J. & Diplock, A. T. (1963). Br. J. Nutr. 17, 117.Google Scholar
Bunyan, J., Green, J., Diplock, A. T. & Robinson, D. (1967). Br. J. Nutr. 21, 137.Google Scholar
Bunyan, J., Green, J., Edwin, E. E. & Diplock, A. T. (1960). Biochem. J. 75, 460.CrossRefGoogle Scholar
Bunyan, J., McHale, D. & Green, J. (1963). Br. J. Nutr. 17, 391.Google Scholar
Caldwell, K. A. & Tappel, A. L. (1965). Archs Biochem. Biophys. 112, 196.Google Scholar
Century, B. & Horwitt, M. K. (1959). Proc. Soc. exp. Biol. Med. 102, 375.Google Scholar
Century, B. & Horwitt, M. K. (1960). J. Nutr. 72, 357.CrossRefGoogle Scholar
Century, B. & Horwitt, M. K. (1964). Proc. Soc. exp. Biol. Med. 117, 320.Google Scholar
Century, B., Witting, L. A., Harvey, C. C. & Horwitt, M. K. (1961). J. Nutr. 75, 341.CrossRefGoogle Scholar
Century, B., Witting, L. A., Harvey, C. C. & Horwitt, M. K. (1963). Am. J. clin. Nutr. 13, 362.CrossRefGoogle Scholar
Dam, H. (1942). Proc. Soc. exp. Biol. Med. 52, 285.Google Scholar
Dam, H. (1944 a). J. Nutr. 27, 193.Google Scholar
Dam, H. (1944 b). J. Nutr. 28, 297.CrossRefGoogle Scholar
Dam, H. (1949). Ann. N. Y. Acad. Sci. 52, 195.Google Scholar
Dam, H. (1957). Pharmac. Rev. 9, 1.Google Scholar
Dam, H. & Granados, H. (1945 a). Acta physiol. scand. 10, 162.Google Scholar
Dam, H. & Granados, H. (1945 b). Science, N. Y. 102, 327.Google Scholar
Dam, H., Nielsen, G. K., Prange, I. & Søndergaard, E. (1958 a). Nature, Lond. 182, 802.Google Scholar
Dam, H., Nielsen, G. K., Prange, I. & Søndergaard, E. (1958 b). Experientia 14, 291.Google Scholar
Desai, I. D., Calvert, C. C. & Scott, M. L. (1964). Archs Biochem. Biophys. 108, 60.Google Scholar
Diplock, A. T., Edwin, E. E., Bunyan, J. & Green, J. (1961). Br. J. Nutr. 15, 425.Google Scholar
Diplock, A. T., Green, J., Bunyan, J. & McHale, D. (1966). Br. J. Nutr. 20, 95.Google Scholar
Diplock, A. T., Green, J., Edwin, E. E. & Bunyan, J. (1960). Biochem. J. 76, 563.Google Scholar
Draper, H. H., Csallany, A. S. & Shah, S. N. (1962). Biochim. biophys. Acta 59, 527.Google Scholar
Elftman, H., Kaunitz, H. & Slanetz, C. A. (1949). Ann. N. Y. Acad. Sci. 52, 72.Google Scholar
Ellman, G. L. (1959). Archs Biochem. Biophys. 82, 70.Google Scholar
Emmel, V. M. (1957). J. Nutr. 61, 51.Google Scholar
Emmel, V. M. & LaCelle, P. L. (1961). J. Nutr. 75, 335.Google Scholar
Erwin, E. S., Sterner, W., Gordon, R. S., Machlin, L. J. & Tureen, L. L. (1961). J. Nutr. 75, 45.Google Scholar
Evans, H. M. & Burr, G. O. (1927). Mem. Univ. Calif. no. 8, p. 1.Google Scholar
Filer, L. J., Rumery, R. E. & Mason, K. E. (1946). Trans. 1st Conf. on Biological Antioxidants, New York, p. 67.Google Scholar
Fitch, C.D. & Dinning, J. S. (1963). J. Nutr. 79, 69.Google Scholar
Fisher, H. & Kaunitz, H. (1965). Proc. Soc. exp. Biol. Med. 120, 175.Google Scholar
Folch, J., Lees, M. & Stanley, G. H. S. (1957). J. biol. Chem. 226, 497.Google Scholar
Geschwind, I. I., Williams, B. S. & Li, C. H. (1951). Acta Endocrinol. 8, 247.Google Scholar
Glavind, J. & Søndergaard, E. (1964 a). Acta. chem. scand. 18, 2173.Google Scholar
Glavind, J. & Søndergaard, E. (1964 b). Acta. chem. scand. 18, 2179.Google Scholar
Glavind, J., Søndergaard, E. & Dam, H. (1961). Acta pharmac. tox. 18, 267.CrossRefGoogle Scholar
Gloor, U., Weber, F., Würsch, J. & Wiss, O. (1963). Helv. chim. Acta 46, 2457.Google Scholar
Goodhue, C. T. & Risley, H. A. (1965). Biochem. biophys. Res. Commun. 17, 549.Google Scholar
Gottlieb, H., Quackenbush, F. W. & Steenbock, H. (1943). J. Nutr. 25, 433.Google Scholar
Granados, H., Mason, K. E. & Dam, H. (1947). Acta path. microbiol. scand. 24, 86.Google Scholar
Green, J., McHale, D., Marcinkiewicz, S., Mamalis, P. & Watt, P. R. (1959). J. chem. Soc. p. 3362.Google Scholar
Griffiths, T. W. (1961). Br. J. Nutr. 15, 271.Google Scholar
György, P. (1951). Vitamin Methods, vol. 2, p. 152. New York: Academic Press Inc.Google Scholar
Hamilton, J. W. & Tappel, A. L. (1963). J. Nutr. 79, 493.Google Scholar
Harris, P.L. & Embree, N. D. (1963). Am. J. clin. Nutr. 13, 385.Google Scholar
Harris, P. L. & Mason, K. E. (1956). Int. Congr. Vitam. E. III. Venice, 1955, p. 1.Google Scholar
Heaton, F. W. & Uri, N. (1958). J. Sci. Fd Agric. 9, 781.CrossRefGoogle Scholar
Hickman, K. C. D., Kaley, M. W. & Harris, P. L. (1944). J. biol. Chem. 152, 321.Google Scholar
Horwitt, M. K. (1962). Vitams Horm. 20, 541.Google Scholar
Horwitt, M. K., Harvey, C. C. & Century, B. (1959). Science, N. Y. 130, 917.CrossRefGoogle Scholar
Horwitt, M. K., Harvey, C. C., Century, B. & Witting, L. A. (1961). J. Am. diet. Ass. 38, 231.Google Scholar
Hove, E. L. (1955). J. Am. clin. Nutr. 3, 328.CrossRefGoogle Scholar
Hutcheson, L. M., Hill, D. C. & Jenkins, K. J. (1963). Poult. Sci. 62, 846.Google Scholar
Kimura, H. & Kummerow, F. A. (1963). Archs Biochem. Biophys. 102, 86.CrossRefGoogle Scholar
Kokatnur, M. G., Okui, S., Kummerow, F. A. & Scott, H. M. (1960). Proc. Soc.exp. Biol. Med. 104, 170.CrossRefGoogle Scholar
Krishnamuthy, S. & Bieri, J. G. (1963). J. Lipid lies. 4, 330.Google Scholar
Lindan, O. & Work, E. (1953). Biochem. J. 55, 554.CrossRefGoogle Scholar
Luttrell, C. N. & Mason, K. E. (1949). Ann. N.Y. Acad. Sci. 52, 113.Google Scholar
McCay, C.M., Paul, H. & Maynard, L. A. (1938). J. Nutr. 15, 367.Google Scholar
MacGee, J. (1959). Analyt. Chem. 31, 298.Google Scholar
Mackenzie, C.G., Mackenzie, J. B. & McCollum, E. V. (1941 a). J. Nutr. 21, 225.Google Scholar
Mackenzie, C. G., Mackenzie, J. B. & McCollum, E. V. (1941 b). Science, N. Y. 94, 216.Google Scholar
Madsen, L. L., McCay, C. M. & Maynard, L. A. (1935). Mem. Cornell Univ. agric. Exp. Stn no. 178.Google Scholar
Mahon, J. H. & Chapman, R. A. (1953). J. Am. Oil Chem. Soc. 30, 34.CrossRefGoogle Scholar
Maplesden, D. C. & Loosli, J. K. (1960). J. Dairy Sci. 43, 645.Google Scholar
Markson, L. M., Carnaghan, R. B. A. & Parr, W. H. (1957). Br. vet. J. 113, 303.Google Scholar
Martin, A. J. P. & Moore, T. (1939). J. Hyg., Cumb. 39, 643.Google Scholar
Mason, K. E., Dam, H. & Granados, H. (1946). Anat. Rec. 94, 265.Google Scholar
Mason, K.E. & Emmel, A. F. (1944). Yale J. biol. Med. 17, 189.Google Scholar
Mason, K.E. & Emmel, A. F. (1945). Anat. Rec. 92, 33.Google Scholar
Mattill, H. A. (1927). Am. J. Physiol. 79, 305.Google Scholar
Menschik, Z. (1944). Edinb. med. J. 51, 486.Google Scholar
Menschik, Z., Munk, M. K., Rogalski, T., Rymaszewski, O. & Szczesniak, T. J. (1949). Ann. N. Y. Acad. Sci. 52, 94.Google Scholar
Mervyn, L. & Morton, R. A. (1959). Biochem. J. 72, 106.Google Scholar
Mock, M. B. & Emmel, V. M. (1963). Proc. Soc. exp. Biol. Med. 113, 850.Google Scholar
Mokadi, S. & Budowski, P. (1963). Br. J. Nutr. 17, 347.CrossRefGoogle Scholar
Morris, M. D., Fitch, C. D. & Cross, E. (1966). J. Lipid Res. 7, 210.Google Scholar
Muth, O. H., Oldfield, J. E., Remmert, L. F. & srhlibert, J. R. (1958). Science, N. Y. 128, 1090.CrossRefGoogle Scholar
Nelan, D. R. & Robson, C. D. (1962). J. Am. chem. Soc. 84, 2963.CrossRefGoogle Scholar
Nishida, T., Tsuchiyama, H., Inoue, M. & Kummerow, F. A. (1960). Proc. Soc. exp. Biol. Med. 105, 308.Google Scholar
Ottolenghi, A. (1959). Archs Biochem. Biophys. 79, 355.Google Scholar
Pappenheimer, A. M. & Goettsch, M. (1931). J. exp. Med. 53, 11.CrossRefGoogle Scholar
Prange, I. (1949). Int. Congr. Biochem. I. Cambridge. Abstr. Commun., p. 60.Google Scholar
Privett, O. S. & Quackenbush, F. W. (1954). J. Am. Oil Chem. Soc. 31, 281.CrossRefGoogle Scholar
Proctor, J. F., Hogue, D. E. & Warner, R. G. (1958). J. Anim. Sci. 17, 1183.Google Scholar
Roe, J. H. (1954). In Methods of Biochemical Analysis. Vol. 1, p. 120. [Glick, D., editor]. New York: Interscience Publishers Inc.CrossRefGoogle Scholar
Rose, C. S. & György, P. (1950). Blood 5, 1062.Google Scholar
Safford, J. W., Swingle, K. F. & Roberts, D. E. (1956). Am. J. vet. Res. 17, 503.Google Scholar
Scheline, R. R. (1965). J. Pharm. Pharmac. 17, 53.Google Scholar
Schwarz, K. (1958). Proc. Soc. exp. Biol. Med. 99, 20 (footnote).Google Scholar
Schwarz, K. (1962). Vitams Horm. 20, 463.Google Scholar
Shimazu, F. & Tappel, A. L. (1964). Science, N. Y. 143, 369.Google Scholar
Simon, E.J., Gross, C. S. & Milhorat, A. T. (1956). J. biol. Chem. 221, 797.CrossRefGoogle Scholar
Singsen, E. P., Bunnell, R. H., Matterson, L. D., Kozeff, A. & Jungherr, E. L. (1965). Poult. Sci. 34, 262.Google Scholar
Stamler, F. W. (1959). Am. J. Path. 35, 1207.Google Scholar
Sternberg, J. & Pascoe-Dawson, E. (1959). Can. med. Ass. J. 80, 266.Google Scholar
Tappel, A. L. (1953). Archs Biochem. Biophys. 47, 223.Google Scholar
Tappel, A. L. (1954). Archs Biochem. Biophys. 50, 473.Google Scholar
Tappel, A. L. (1955). Archs Biochem. Biophys. 54, 266.CrossRefGoogle Scholar
Tappel, A. L. (1961). In Autoxidation and Antioxidants. Vol. 1, p. 325. [Lundberg, W. O., editor.] New York: Interscience Publishers Inc.Google Scholar
Tappel, A. L. (1962). Vitams Horm. 20, 493.Google Scholar
Tappel, A. L. (1965). Fedn Proc. Fedn Am. Socs exp. Biol. 24, 73.Google Scholar
Tappel, A.L. & Zalkin, H. (1959). Archs Biochem. Biophys. 80, 333.Google Scholar
Uri, N. (1961). In Autoxidation and Antioxidants. Vol. 1. p. 55. [Lundberg, W. O., editor.] New York: Interscience Publishers Inc.Google Scholar
Valberg, L. S., Young, R. A. & Beveridge, J. M. R. (1959). Can. J. Biochem. Physiol. 37, 493.Google Scholar
Vasington, F. D., Reichard, S. M. & Nason, A. (1960). Vitams Horm. 18, 43.Google Scholar
Weber, F., Gloor, U. & Wiss, O. (1962). Fette Seifen Anstr-Mittel 64, 1149.Google Scholar
Weber, F. & Wiss, O. (1963). Helv. physiol. pharmac. Acta 21, 131.Google Scholar
Welch, J. G., Hoekstra, W. G., Pope, A. L. & Phillips, P. H. (1960). J. Anim. Sci. 19, 620.Google Scholar
Witting, L. A. (1965). Fedn Proc. Fedn Am. Socs exp. Biol. 24, 912.Google Scholar
Witting, L. A., Harmon, E. M. & Horwitt, M. K. (1965). Proc. Soc. exp. Biol. Med. 120, 718.Google Scholar
Witting, L. A. & Horwitt, M. K. (1964). J. Nutr. 82, 19.Google Scholar
Zalkin, H., Tappel, A. L., Caldwell, K. A., Shibko, S., Desai, I. D. & Holliday, T. A. (1962). J. biol. Chem. 237, 2678.Google Scholar
Zalkin, H., Tappel, A. L. & Jordan, J. P. (1960). Archs Biochem. Biophys. 91, 117.Google Scholar