Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T18:41:51.540Z Has data issue: false hasContentIssue false

Vitamin B6 deficiency experimentally-induced bone and joint disorder: microscopic, radiographic and biochemical evidence

Published online by Cambridge University Press:  10 October 2007

Priscille G. Massé
Affiliation:
École de nutrition et d'etudes familiales, Université de Moncton, Moncton, New Brunswick, Canada, El A 3E9
Kenneth P. H. Pritzker
Affiliation:
The Connective Tissue Research Group, Department of Pathology, Mount Sinai Hospital. University of Toronto, Toronto, Canada, M5G 1X5
Maria G. Mendes
Affiliation:
The Connective Tissue Research Group, Department of Pathology, Mount Sinai Hospital. University of Toronto, Toronto, Canada, M5G 1X5
Adele L. Boskey
Affiliation:
The Laboratory of Ultrastructural Biochemistry, The Hospital for Special Surgery, New York, 10021, USA
Harald Weiser
Affiliation:
Department of Vitamin Research and Development, Hoffmann–La Roche Ltd., Basel, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the present study the effect of pyridoxine deficiency on the utrastructure and morphology of bone and its metabolism was examined in the rapidly growing chick. Pyridoxine-deficient animals had tibias of reduced dry weight and cortical thickness. Histomorphometry demonstrated a disproportionately high eroded surface, lower amount of osteoid tissue and reduced mineralized trabecular width. Anterior–posterior radiographs of the tibiotarsometatarsal joint showed reduced secondary ossification centres and coarse trabeculation. Decalcified metaphyseal cartilage showed irregular trabeculas and a markedly reduced amount of Fast-green counterstain matrix suggesting that there is less collagen present and in turn less availability for matrix to be laid down for later calcification. Plasma activity of the bone alkaline phosphatase isoenzyme (EC) 3. 1.3.1) was decreased. Plasma Ca and PO4 levels did not vary. The present bone study referring to a pseudo-lathyritic state in which collagen maturation is not completely achieved supports the hypothesis that pyridoxine is an essential nutrient for the connective tissue matrix.

Type
Effect of vitamin D6 difficiency on bone
Copyright
Copyright © The Nutrition Society 1994

References

Bannister, D. W. & Burns, A. B. (1970). Adaptation of the Bergman and Loxley technique for hydroxyproline determination to the autoanalyser and its use in determining plasma hydroxyproline in the domestic fowl. Analyst 95, 596600.Google Scholar
Bell, G. H., Dunbar, O. & Beck, J. S. (1967). Variation in strength of vertebrae with age and their relation to osteoporosis. Calcified Tissue Research 1, 7586.CrossRefGoogle ScholarPubMed
Benke, P. J., Fleshood, H. L. & Pitot, H. C. (1972). Osteoporotic bone disease in the pyridoxine-deficient rat. Biochernicul Medicine 6, 526535.CrossRefGoogle ScholarPubMed
Bitter, T. & Muir, H. M. (1962). A modified uronic acid carbazole reaction. Analytical Biochemistry 4, 330334.CrossRefGoogle ScholarPubMed
Borgers, M. E. & Thone, F. (1975). The inhibition of alkaline phosphatase by L-bromotetramisole. Histochemistry 44, 277280.Google Scholar
Boskey, A. L., Stiner, D., Doty, S. B. & Binderman, I. (1991). Requirement of vitamin C for chick cartilage calcification in a differentiating chick limb-bud mesenchymal cell culture. Bone 12, 277282.CrossRefGoogle Scholar
Bradford, M. A. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Analyticul Biochemistry 72, 248254.Google Scholar
Cashin, C. H., Doherty, N. S. & Jeffries, B. L. (1980). An investigation of the effect of anti-inflammatory and anti-rheumatoid drugs in cell-mediated immune arthritis in guinea-pigs by microfocal radiography. British Journal of Experirnentu1 Pathology 61, 296302.Google Scholar
Dodds, R. A., Catterall, A., Bitensky, L. & Chayen, J. (1986). Abnormalities in fracture healing induced by vitamin B6-deficiency in rats. Bone 7, 489495.CrossRefGoogle ScholarPubMed
Eamens, G. J., Macadam, J. F. & Laing, E. A. (1984). Skeletal abnormalities in young horses associated with zinc toxicity and hypocuprosis. Australian Veterinary Journal 61, 205207.Google Scholar
Cries, C. L. & Scott, M. L. (1972). The pathology of pyridoxine deficiency in chicks. Journal of Nurrition 102, 12591268.Google Scholar
Heinegard, D., Hultenby, K., Oldberg, A., Reinholt, F. & Wendel, M. (1989). Macromolecules in hone matrix. Connective Tissue Research 21, 314.CrossRefGoogle Scholar
LeRoy, E. C., Kaplan, A., Udenfriend, S. & Sjoerdsma, A. (1964). A hydroxyproline-containing, collagen-like protein in plasma and a procedure for its assay. Journal of Biological Chemistry 239, 33503356.CrossRefGoogle Scholar
LeRoy, C. E. & Sjoerdsma, A. (1965). Clinical significance of a hydroxyproline-containing protein in human plasma. Journal of Clinical Investigution 44, 914919.CrossRefGoogle ScholarPubMed
Levine, C. I. (1966). The hydrating effect of lathyrogenic compounds on chick-embryo cartilage in vivo. Biochemicul Journal 101, 441–441.Google Scholar
Levine, C. I. & Gross, J. (1959). Alterations in state of molecular aggregation of collagen induced in chick embryos by β-aminopropionitrile (Lathyrus factor). Journal of Experimental Medicine 110, 771790.Google Scholar
Lillie, R. D. (1965). Histopathologic Technic and Practical Histochernistry, 3rd ed., pp. 611618. New York: McGraw-Hill Book Company.Google Scholar
Masse, P. G., Colombo, V. E., Howell, D. S. & Weiser, H. (1990). Morphological abnormalities in vitamin B6 tarsometatarsal chick cartilage. Scanning Microscopy 4, 667674.Google Scholar
Masse, P. G., Schlachter, M. & Weiser, H. (1988). Is pyridoxine essential for bone metabolism? International Journal for Vitamin and Nutrition Research 58, 295299.Google Scholar
Parfitt, A. M., Drezner, M. K., Glorieux, F. H., Kanis, J. A., Malluche, H., Meunier, P. J., Ott, S. M. & Recker, R. R. (1987). Bone histomorphometry : standardization of nomenclature, symbols and units. Journal of Bone and Mineral Research 2. 595610.CrossRefGoogle ScholarPubMed
Reddi, A. H. (1981). Cell biology and biochemistry of endochondral bone development. Collagen Related Research 1, 209226.Google Scholar
Reddi, A. H., Hascall, V. C. & Hascall, G. H. (1978). Changes in proteoglycan types during matrix-induced cartilage and bone development. Journal of Biological Chemistry 253, 24292436.Google Scholar
Rosenberg, L. (1971). Chemical basis for the histological use of Safranin O in the study of articular cartilage. Journal of Bone and Joint Surgery 53A, 6982.Google Scholar
Sauberlich, H. E. (1981). Vitamin B6 status past and present. In Methods in Vitamin B6 Nutrition. Analysis and Status Assessment, pp. 203251 [Leklem, J. E. and Reynolds, R. D., editors]. New York: Plenum Press.CrossRefGoogle Scholar
Schnitzler, C. M., Mesquita, J. M., Gear, K. A., Robson, H. J., Moddley, G. P. & Smyth, A. E. (1990). Iliac bone biopsies at the time of periarticular stress fractures during fluoride therapy: comparison with pretreatment biopsies. Journal of Bone and Mineral Research 5, 141152.CrossRefGoogle ScholarPubMed
Scott, M. L., Nesheim, M. C. & Young, R. J. (1982). Nutrition of the Chicken. Ithaca: M. L. Scott & Associates.Google Scholar
Snedecor, C. W. & Cochran, W. G. (1982). Statistical Methods. Ames: The Iowa State University Press.Google Scholar
Vetter, U., Eanes, E. D., Kopp, J. B., Termine, J. D. & Robey, P. G. (1991). Changes in apatite crystal size in bones of patients with osteogenesis imperfecta. Calcified Tissue International 49, 248250.Google Scholar
Vuilleumkr, J. P., Keller, H. E., Rettenmaier, R. & Hunziker, F. (1983). Clinical chemical methods for the routine assessment of the vitamin status in human populations. 11. The water-soluble vitamins B1, B2 and B6. Internutional Journal of Vitumin and Nutrition Research 53, 359370.Google Scholar
Woessner, J. F. Jr (1961). The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Archives of Biochemistry and Biophysics 93, 440447.CrossRefGoogle ScholarPubMed
Yamauchi, M., Young, D. R., Chandler, G. S. & Mechanic, G. L. (1988). Cross-linking and new bone collagen synthesis in immobilized and recovering primate osteoporosis. Bone 9, 415418.Google Scholar