Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T15:16:04.541Z Has data issue: false hasContentIssue false

Vitamin B12 metabolism in the fruit bat (Rousettus aegyptiacus). The induction of vitamin B12 deficiency and its effect on folate levels.

Published online by Cambridge University Press:  09 March 2007

Susan V. van Tonder
Affiliation:
Department of Haernatology, School of Pathology, University of the Witwatersrand and South African Institute for Medical Research, PO Box 1038, Johannesburg 2000, South Africa
J. Metz
Affiliation:
Department of Haernatology, School of Pathology, University of the Witwatersrand and South African Institute for Medical Research, PO Box 1038, Johannesburg 2000, South Africa
R. Green
Affiliation:
Department of Haernatology, School of Pathology, University of the Witwatersrand and South African Institute for Medical Research, PO Box 1038, Johannesburg 2000, South Africa
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Vitamin B12 metabolism was studied in bats of the species Rousettus aegyptiacus, which live on an all-fruit diet in the wild.

2. There was a wide range in values for the serum vitamin B12 concentration of newly captured bats, but bats captured in the early spring had significantly higher mean serum vitamin B12 levels than bats captured in the early autumn.

3. There was an exponential decrease in serum vitamin B12 concentration with time in captivity for bats fed on a vitamin B12-deficient, all-fruit diet; the biological half-life was 80 d in serum, 109 d in liver and 164 d in kidney.

4. The main storage organ for vitamin B12 in the bat was the liver, mean content 1067 ng vitamin B12. After 50 d, injected [57Co]cyanocobalamin had equilibrated with body vitamin B12 stores, and 17% of the retained radioactivity was present in the liver. From these results it was calculated that the total body vitamin B12 content of the bat was c. 6500 ng.

5. The biological half-life of injected [57Co]cyanocobalamin was 70–88 d and the calculated daily requirement was 50–60 ng (0.2 μg/kg body-weight per d).

6. As serum vitamin B12 levels decreased, serum folate levels increased. The erythrocyte folate concentration increased significantly after 130 d on the all-fruit diet and then decreased to the initial values after 190 d.

7. Vitamin B12 metabolism in the fruit bat is similar in many respects to that of man, but on a ‘weight-for-weight’ basis the bat has a 5- to 15-fold greater requirement for this vitamin.

8. Vitamin B12 deficiency may be induced fairly rapidly in fruit bats fed on an all-fruit diet.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1975

References

Adams, J. F. & Boddy, K. (1968). J. Lab. clin. Med. 72, 392.Google Scholar
Adams, J. F. & Boddy, K. (1971). In The Cobalamins, p. 153 [Arnstein, H. R. V. and Wrighton, R. J., editors]. Edinburgh and London: Churchill Livingstone.Google ScholarPubMed
Boddy, K. & Adams, J. F. (1968). Am. J. clin. Nutr. 21, 657.CrossRefGoogle Scholar
Couch, J. R., Olcese, O., Witten, P. W. & Colby, R. W. (1950). Am. J. Physiol. 163, 77.CrossRefGoogle Scholar
Das, K. C. & Hoffbrand, A. V. (1970). Br. J. Haemat. 19, 203.CrossRefGoogle Scholar
Dawbarn, M. C., Hine, D. C. & Smith, J. (1958). Aust. J. exp. Biol. med. Sci. 36, 541.CrossRefGoogle Scholar
Doctor, V. M. & Couch, J. R. (1952). Proc. Soc. exp. Biol. Med. 81, 222.CrossRefGoogle Scholar
Glass, G. B. J. (1954). Bull. N.Y. Acad. Med. 30, 717.Google Scholar
Gräsbeck, R., gnatius, R., Järnefelt, J., Linden, H. & Mali, A. (1961). Clinica chim. Acta 6, 56.CrossRefGoogle Scholar
Gräsbeck, R., Nyberg, W. & Reizenstein, P. (1958). Proc. Soc. exp. Biol. Med. 97, 780.CrossRefGoogle Scholar
Green, R., Newmark, P. A., Musso, A. M. & Mollin, D. L. (1974). Br. J. Huemat. 27, 507.CrossRefGoogle Scholar
Green, R., van Tonder, S. V., Cole, G., Oettlé, G. J. & Metz, J. (1975). Nature, Lond. 254, 148.CrossRefGoogle Scholar
Green, R., van Tonder, S. V., Kew, M. C. & Metz, J. (1975). Gastroenterology (In the Press.)Google Scholar
Grossowicz, N., Jablonska, M., Izak, G. & Rachmilewitz, M. (1970). Am. J. clin. Nutr. 23, 127.CrossRefGoogle Scholar
Heinrich, H. C. & Pfau, A. A. (1962). Vitamin B12 und Intrinsic Faktor, 2. Europäisches Symposium, Hamburg, 1961, p. 351. Stuttgart: Ferdinand Enke Verlag.Google Scholar
Herbert, V. (1961). J. clin. Invest. 40, 81.CrossRefGoogle Scholar
Herbert, V. & Zalusky, R. (1962). J. clin. Invest. 41, 1263.CrossRefGoogle Scholar
Heysell, R. M., Bozian, R. C., Darby, W. J. & Bell, M. C. (1966). Am. J. clin. Nutr. 18, 176.CrossRefGoogle Scholar
Hippe, E. (1971). Comp. Biochem. Physiol. 40, 301.Google Scholar
Hoffbrand, A. V., Newcombe, B. F. A. & Mollin, D. L. (1966). J. clin. Path. 19, 17.CrossRefGoogle Scholar
Huser, H.-J. & Beard, M. E. J. (1970). Scheueiz. med. Wschr. 100, 347.Google Scholar
Jaffé, W. G., Indacochea, N. & Embden, C. (1957). Experientia 13, 251.CrossRefGoogle Scholar
Kato, N. (1960). J. Vitam. 6, 132.CrossRefGoogle Scholar
Kutzbach, C., Galloway, E. & Stokstad, E. L. R. (1967). Proc. Soc. exp. Biol. Med. 124, 801.CrossRefGoogle Scholar
McCance, R. A. & Widdowson, E. M. (1960). Spec. Rep. Ser. med. Res. Coun. no. 297.Google Scholar
Meyer, L. M., Berlin, N. I., Jiminez-Casado, M. & Arkun, S. N. (1956). Proc. Soc. exp. Biol. Med. 91, 129.CrossRefGoogle Scholar
Miller, A. & Sullivan, J. F. (1961). J. Lab. clin. Med. 58, 763.Google Scholar
Nesheim, R. O., Krider, J. L. & Johnson, B. C. (1950). Arch Biochem. 27, 240.Google Scholar
Noronha, J. M. & Silverman, M. (1962). Vitamin B12 und Intrinsic Faktor, 2. Europaisches Symposium, Hamburg, 1961, p. 728. Stuttgart: Ferdinand Enke Verlag.Google Scholar
Novick, A. (1969). The world of Bats. New York, Chicago and San Francisco: Holt, Rinehart & Winston.Google Scholar
Nygaard, K., Killander, A., Myhre, E. & Helsingen, N. (1966). Scand. J. Haemat. 3, 213.CrossRefGoogle Scholar
Prichard, R. W. (1968). Animal Models for Biochemical Research. NAS Symposium1967. Washington, DC: National Academy of Sciences.Google Scholar
Reizenstein, P. G., Ek, G. & Matthews, C. M. E. (1966). Physics Med. Biol. 11, 295.CrossRefGoogle Scholar
Robbins, W. J., Hervey, A. & Stebbins, M. E. (1950). Science, N.Y. 112, 455.Google Scholar
Rosenblum, C., Chow, B. F., Condon, G. P. & Yamamoto, R. S. (1952). J. biol. Chem. 198, 915.CrossRefGoogle Scholar
Rosenthal, H. L. & Brown, C. L. (1954). Roc. Soc. exp. Biol. Med. 86, 117.CrossRefGoogle Scholar
Schloesser, L. L., Deshpande, P. & Schilling, R. F. (1958). Archs intern. Med. 101, 306.CrossRefGoogle Scholar
Simnet, K. I. & Spray, G. H. (1961). Br. J. Nutr. 15, 555.CrossRefGoogle Scholar
Smith, S. E., Koch, B. A. & Turk, K. L. (1951). J. Nutr. 44, 455.CrossRefGoogle Scholar
Stokstad, E. L. R., Page, A. Jr, Pierce, J., Franklin, A. L., Jukes, T. H., Heinle, R. W., Epstein, M. & Welch, A. D. (1948). J. Lab. clin. Med. 33, 860.Google Scholar
Tisman, G. & Herbert, V. (1973). Blood 41, 465.CrossRefGoogle Scholar
Vitale, J. J. & Hegsted, D. M. (1967). Am. J. clin. Nutr. 20, 311.CrossRefGoogle Scholar
Waters, A. H. & Mollin, D. L. (1961). J. clin. Path. 14, 335.CrossRefGoogle Scholar
Waters, A. H. & Mollin, D. L. (1963). Br. J. Haemat. 9, 319.CrossRefGoogle Scholar