Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-30T01:34:56.510Z Has data issue: false hasContentIssue false

Utilization of volatile fatty acids and glucose for protein deposition in lambs*

Published online by Cambridge University Press:  09 March 2007

B. Eskelandt
Affiliation:
Department of Animal Husbandry, University of Missouri, Columbia, Missouri, USA
W. H. Pfander
Affiliation:
Department of Animal Husbandry, University of Missouri, Columbia, Missouri, USA
R. L. Preston
Affiliation:
Department of Animal Husbandry, University of Missouri, Columbia, Missouri, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Glucose, and acetic, propionic and butyric acids, the major energy sources available to ruminants, have been comparatively evaluated as energy sources for growth in lambs. The energy sources were administered intravenously at 2·092 and 2·510 MJ metabolizable energy per 24 h for periods of 9–12 d. Nitrogen was given in excess of requirement so that growth rate was limited by energy, as indicated by the increased N retention after intravenous administration of energy.

2. The N-balance results from the trials showed that propionic acid promoted a significantly (P < 0·01) higher N retention than acetic acid. In some of the experiments there were no significant differences between propionic and butyric acids, and in others, no significant differences between acetic and butyric acids. Compared with isoenergetic glucose infusion, all volatile fatty acids were less efficiently utilized than glucose. The mean values for N balance (g/d) were 2·31 during control infusion, 6·53, 5·71, 5·48 and 4·59 during glucose, propionate, butyrate and acetate infusions, respectively.

3. All energy sources reduced the faecal N excretion significantly. The greatest reduction was observed during butyrate treatment. The mean values for faecal N excretion (g/d) were 4·24 for control, 4·00 for acetate, 3·89 for propionate, 3·83 for glucose, and 3·76 for butyrate infusion. The reduced faecal N excretion after butyrate infusion partly accounts for the increased N retention with that treatment.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1973

References

REFERENCES

Armstrong, D. G. & Blaxter, K. L. (1957 a). Br. J. Nutr. 11, 247.CrossRefGoogle Scholar
Armstrong, D. G. & Blaxter, K. L. (1957 b). Br. J. Nutr. 11, 413.CrossRefGoogle Scholar
Armstrong, D. G. & Blaxter, K. L. (1960). Proc. int. Congr. Nutr. V. Wash. p. 74.Google Scholar
Armstrong, D. G., Blaxter, K. L., Graham, N. McC. & Wainman, F. W. (1958). Br. J. Nutr. 12, 177.Google Scholar
Bentley, O. G., Johnson, R. R., Royal, G. W., Deatherage, F., Kunlde, L. E., Tyznik, W. J. & Bell, D. S. (1956). Res. Bull. Ohio agric. Exp. Stn no. 774, p. 3.Google Scholar
Bergman, E. N., Reid, R. S., Murray, M. G., Brockway, J. M. & Whitelaw, F. G. (1965). Biochem. J. 97, 53.Google Scholar
Black, A. L., Kleiber, M., Smith, A. H. & Stewart, D. N. (1957). Biochim. biophys. Acta 23, 54.Google Scholar
Bull, L. S., Johnson, D. E. & Reid, J. T. (1967). Proc. Cornell Nutr. Conf Feed Mfrs p. 83.Google Scholar
Elliot, J. M., Hogue, D. E., Myers, G. S. Jr & Loosli, J. K. (1965). J. Nutr. 87, 233.CrossRefGoogle Scholar
Essig, H. W., Hatfield, E. E. & Johnson, B. C. (1959). J. Nutr. 69, 135.Google Scholar
Hovell, F. D. (1964). Anim. Prod. 6, 261.Google Scholar
Jacobson, D. R., Reid, C. S. W. & Ulyatt, M. J. (1971). Fedn Proc. Fedn Am. Socs exp. Biol. 30, 295 Abs.Google Scholar
Leng, R. A. & Brett, D. J. (1966). Br. J. Nutr. 20, 541.Google Scholar
Ørskov, E. R. & Allen, D. M. (1966 a). Br. J. Nutr. 20, 295.CrossRefGoogle Scholar
Ørskov, E. K. & Allen, D. M. (1966 b). Br. J. Nutr. 20, 509.Google Scholar
Ørskov, E. R. & Allen, D. M. (1966 c). Br. J. Nutr. 20, 519.CrossRefGoogle Scholar
Ørskov, E. R., Hovell, F. D. & Allen, D. M. (1966). Br. J. Nutr. 20, 307.CrossRefGoogle Scholar
Pfander, W. H. & Phillipson, A. T. (1953). J. Physiol., Lond. 122, 102.Google Scholar
Pfander, W. H. & Reid, R. L. (1959). J. Anim. Sci. 18, 1560.Google Scholar
Pfander, W. H. & Reid, R. L. (1960). Fedn Proc. Fedn Am. Socs exp. Biol. 19, 323.Google Scholar
Potter, E. L., Purser, D. B. & Cline, J. H. (1968). J. Nutr. 95, 655.CrossRefGoogle Scholar
Reid, R. L. (1958). Aust. J. agric. Res. 9, 788.Google Scholar
Rook, J. A. F., Balch, C. C., Campling, R. C. & Fisher, L. J. (1963). Br. J. Nutr. 17, 399.Google Scholar
Thomson, D. J. (1965). Proc. Nutr. Soc. 24, xxvi.Google Scholar
Van Soest, P. J. (1967). J. Anim. Sci. 26, 119.Google Scholar