Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T23:46:13.147Z Has data issue: false hasContentIssue false

Utilization of the nucleic acids of Escherichia coli and rumen bacteria by sheep

Published online by Cambridge University Press:  24 July 2007

R. C. Smith
Affiliation:
Department of Animal and Dairy Sciences, Auburn University, Agricultural Experiment Station, Auburn, Alabama 36830, USA
N. M. Moussa
Affiliation:
Department of Animal and Dairy Sciences, Auburn University, Agricultural Experiment Station, Auburn, Alabama 36830, USA
G. E. Hawkins
Affiliation:
Department of Animal and Dairy Sciences, Auburn University, Agricultural Experiment Station, Auburn, Alabama 36830, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Escherichia coli and mixed cultures of rumen bacteria were grown with [8-14C]adenine to label their nucleic acids specifically.

2. The labelled bacteria were injected into the rumen of sheep and the radioactivity incorporated into tissue nucleic acids and that excreted in the urine and faeces was determined.

3. The radioactivity was present in the cold trichloroacetic acid-soluble fraction and the RNA and DNA fractions of all tissues examined. Liver, kidney, spleen, and blood had the highest levels of radioactivity.

4. The radioactivity of the RNA was present only in adenosine monophosphate and guanosine monophosphate.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1974

References

REFERENCES

Altman, P. L. & Dittmer, D. S. (1964). Biology Data Book p. 264. Washington, DC: Federation of American Societies for Experimental Biology.Google ScholarPubMed
Barnard, E. A. (1969). Nature, Lond. 221, 340.CrossRefGoogle Scholar
Beaven, G. H., Holiday, E. R. & Johnson, E. A. (1955). In The Nucleic Acids p. 513 [Chargaff, E. and Davidson, J. N., editors]. New York: Academic Press.Google Scholar
Condon, R. J., Hall, G. & Hatfield, E. E. (1970). J. Anim. Sci. 31, 1037.Google Scholar
Condon, R. J. & Hatfield, E. E. (1970). Fedn Proc. Fedn Am. Socs exp. Biol. 29, 760 Abstr.Google Scholar
Ellis, W. C. & Bleichner, K. L. (1969 a). Fedn Proc. Fedn Am. Socs exp. Biol. 28, 623 Abstr.Google Scholar
Ellis, W. C. & Bleichner, K. L. (1969 b). J. Anim. Sci. 29, 157 Abstr.Google Scholar
Hoogenraad, N. J., Hird, F. J. R., White, R. G. & Leng, R. A. (1970). Br. J. Nutr. 24, 129.CrossRefGoogle Scholar
Kirby, K. S. (1956). Biochem. J. 64, 405.CrossRefGoogle Scholar
Magasanik, B., Vischer, E., Doniger, R., Elson, D. & Chargaff, E. (1950). J. biol. Chem. 186, 37.CrossRefGoogle Scholar
Murray, A. W. (1971). A. Rev. Biochem. 40, 811.CrossRefGoogle Scholar
Parks, P. F. & Smith, R. C. (1969). J. Nutr. 97, 481.CrossRefGoogle Scholar
Schmidt, G. & Thannhauser, S. J. (1945). J. biol. Chem. 161, 83.CrossRefGoogle Scholar
Smith, R. C. & Mathur, C. F. (1973). Can. J. Microbiol. 19, 591.CrossRefGoogle Scholar
Smith, R. C. & Salmon, W. D. (1965 a). J. Bact. 89, 687.CrossRefGoogle Scholar
Smith, R. C. & Salmon, W. D. (1965 b). Archs Biochem. Biophys. 111, 191.CrossRefGoogle Scholar
Smith, R. H. (1969). J. Dairy Res. 36, 113.Google Scholar
Smith, R. H. & McAllan, A. B. (1971). Br. J. Nutr. 25, 181.CrossRefGoogle Scholar
Strength, D. R., Yu, S. Y. & Davis, E. Y. (1965). In Recent Research on Carnitine. Its Relation to Lipid Metabolism p. 45 [Wolf, G., editor]. Cambridge, Mass.: The M.I.T. Press.Google Scholar
Wyatt, G. R. (1951). Biochem. J. 48, 584.CrossRefGoogle Scholar