Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T03:48:59.686Z Has data issue: false hasContentIssue false

Use of the constant infusion technique for measuring rates of protein synthesis in the New Zealand White rabbit

Published online by Cambridge University Press:  24 October 2018

G. A. Nicholas
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
G. E. Lobley
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
C. I. Harris
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

  1. 1. To study the potential of the constant-infusion technique for measuring rates of protein synthesis in New Zealand White rabbits, animals were infused for up to 6 h with radioactively-labelled tyrosine.

  2. 2. Labelled tyrosine from plasma and tissues was isolated from labelled metabolites by ion-exchange chromatography.

  3. 3. Analysis of serial blood and muscle biopsy samples removed under anaesthesia showed that the specific radioactivity (SR) of the free tyrosine pools reached an approximately constant value within 2 h.

  4. 4. Certain commercial preparations of L-[side-chain 2,3-3H]tyrosine were contaminated with 300 mg radioactive D-tyrosine/g. The D-isomer appeared to enter the muscle intracellular pool.

  5. 5. In constant-infusion experiments L-[3H]tyrosine could replace the uniformly-14C-labelled L-isomer for the determination of rates of protein synthesis in muscle. L-[side-chain 2,3-3H]tyrosine may not be suitable for use as a precursor for measuring rates of liver protein synthesis.

  6. 6. Evidence is presented that the precursor of liver protein synthesis may not be well defined by the SR for free tyrosine of the homogenate.

  7. 7. The technique was used to measure the rates of protein synthesis in adult rabbits. The rates of protein synthesis in liver and muscle were measured and from measurements of tyrosine flux the mean rate of whole-body protein synthesis was calculated as 13.8 g/kg per d.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1977

References

Banos, G., Danie, J. P. M., Moorhouse, S. R. & Pratt, O. E. (1973). J. Physiol., London 235, 459.CrossRefGoogle Scholar
Bensley, B. A. (1948). Practical Anatomy of the Rabbit, 8th ed. Toronto: University of Toronto Press.Google Scholar
Buttery, P. J., Beckerton, A., Mitchell, R. M., Davies, K. & Annison, E. F. (1975). Proc. Nutr. Soc. 34, 91.Google Scholar
FeO, E. B. & Garlick, P. J. (1974). Biochem. J. 142, 413.Google Scholar
Gaitonde, M. K. & Nixey, R. W. K. (1972). Analyt. Biochem. 50, 416.CrossRefGoogle Scholar
Gan, J. C. & Jeffay, H. (1967). Biochim. biophys. Acta 148, 448.CrossRefGoogle Scholar
Gan, J. C. & Jeffay, H. (1971). Biochim. biophys. Acta 252, 125.CrossRefGoogle Scholar
Garlick, P. J., Burk, T. L. & Swick, R. W. (1976). Am. J. Physiol. 230, 1108.CrossRefGoogle Scholar
Garlick, P. J. & Marshall, I. (1972). J. Neurochem. 19, 577.CrossRefGoogle Scholar
Garlick, P. J., Millward, D. J. & James, W. P. T. (1973). Biochem. J. 136, 935.CrossRefGoogle Scholar
Goldspink, G. (1966). Can. J. Physiol. Pharmac. 44, 765.CrossRefGoogle Scholar
Greenstein, J. P. & Winitz, M. (1961). Chemistry of the Amino Acids, Vol. 2, p. 860. New York and London: John Wiley & Sons Inc.Google Scholar
Halliday, D. & McKeran, R. O. (1975). Clin. Sci. mol. Med. 49, 581.Google Scholar
Hider, R. C., Fern, E. B. & London, D. R. (1969). Biochem. J. 114, 171.CrossRefGoogle Scholar
Ilan, J. & Singer, M. (1975). J. mol. Biol. 91, 39.CrossRefGoogle Scholar
James, W. P. T., Garlick, P. J., Sender, P. M. & Waterlow, J. C. (1976). Clin. Scl. mol. Med. 50, 525.Google Scholar
Kerr, N. S. (1955). Anat. Rec. 121, 481.CrossRefGoogle Scholar
Li, J. B., Fulks, R. M. & Goldberg, A. L. (1973). J. biol. Chem. 248, 7272.CrossRefGoogle Scholar
Manning, J. M. & Moore, S. (1968). J. biol. Chem. 243, 5591.CrossRefGoogle Scholar
Martin, R. B. & Marlino, V. J. (1965). Science, N.Y. 150, 493.CrossRefGoogle Scholar
Millward, D. J., Garlick, P. J., James, W. P. T., Sender, P. M. & Waterlow, J. C. (1976). In Protein Metabolism and Nutrition, [D. J. A. Cole, K. N. Boorman, P. J. Buttery, D. Lewis, R. J. Neale and H. Swan, editors]. London: Butterworths.Google Scholar
Millward, D. J., Garlick, P. J., Stewart, R. J. C., Nnanyelugo, D. O. & Waterlow, J. C. (1975). Biochem J. 150, 235.CrossRefGoogle Scholar
Mowbray, J. & Last, K. S. (1974). Biochim. biophys. Acta 349, 114.CrossRefGoogle Scholar
Perry, B. N. (1975). J. agric. Sci., Camb. 84, 191.CrossRefGoogle Scholar
Seta, K., Sansur, M. & Lejtha, A. (1973). Biochim. biophys. Acta 294, 472.CrossRefGoogle Scholar
van Venrooij, W. J., Poort, C, Kramer, M. F. & Jansen, M. T. (1972). Eur. J. Biochem. 30, 422.CrossRefGoogle Scholar
Waterlow, J. C. & Stephen, J. M. L. (1967). Clin. Sci. 33, 489.Google Scholar
Waterlow, J. C. & Stephen, J. M. L. (1968). Clin. Sci. 35, 287.Google Scholar
Webster, A. J. F. (1976). In Growth and Productivity of Meat Animals, [D. Lister, D. N. Rhodes, V. R. Fowler and M. Fuller, editors]. London: Plenum Press.Google Scholar
Zilversmit, D. B. (1960). Am. J. Med. 29, 832.CrossRefGoogle Scholar