Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T11:24:43.377Z Has data issue: false hasContentIssue false

Urinary excretion of aromatic acids by sheep given diets containing different amounts of protein and roughage

Published online by Cambridge University Press:  09 March 2007

A. K. Martin
Affiliation:
Hannah Dairy Research Institute, Ayr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The urinary excretions of total diethyl ether-soluble acids and total aromatic acids of three sheep given maintenance diets containing different proportions of hay, rolled oats and decorticated groundnut meal were determined.

2. When the sheep were given the diet containing 70% rolled oats the excretion of aromatic acids in the urine was less than that observed when the sheep were given diets high in roughage or protein concentrates.

3. The amounts of aromatic acids excreted in the urine were not related to the dietary intakes of crude protein, apparently digestible crude protein, crude fibre, lignin or cellulose.

4. The excretion of comparatively large amounts of aromatic acids in the urine of ruminants is discussed in relation to the smaller amounts normally excreted by non-ruminants. Possible reasons for the failure to observe any relationship between the amounts of aromatic acids excreted in the urine of the sheep and those constituents of the diets that were investigated are discussed and the nature of other precursors is suggested.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1969

References

Adamson, R. H., Bridges, J. W. & Williams, R. T. (1966). Biochem. J. 100, 71P.Google Scholar
Armstrong, M. D., Chao, F. C., Parker, V. J. & Wall, P. E. (1995). Proc. Soc. exp. Biol. Med. 90, 675.CrossRefGoogle Scholar
Asatoor, A. M. (1965). Biochim. biophys. Acta 100, 290.CrossRefGoogle Scholar
Bernard, K., Vuilleumier, J. P. & Brubacher, G. (1955). Helv. chim. acta 38, 1438.CrossRefGoogle Scholar
Blaxter, K. L., Clapperton, J. L. & Martin, A. K. (1966). Br. J. Nutr. 20, 449.CrossRefGoogle Scholar
Block, R. J. & Bolling, D. (1945). The Amino Acid Composition of Proteins and Foods, 1st ed. Springfield, Illinois: C. C. Thomas.CrossRefGoogle Scholar
Bondi, A. H. & Meyer, H. (1943). J. agric. Sci., Camb. 33, 123.CrossRefGoogle Scholar
Brigl, P. & Pfähler, A. (1929). Tierernährung I, 30.Google Scholar
Chandler, J. P. & Lewis, H. B. (1932). J. biol. Chem. 96, 619.CrossRefGoogle Scholar
Crampton, E. W. & Maynard, L. A. (1938). J. Nutr. 15, 383.CrossRefGoogle Scholar
Csonka, F. A., Phillips, M. & Jones, D. B. (1929). J. biol. Chem. 85, 65.CrossRefGoogle Scholar
Ely, R. E., Kane, E. A., Jacobson, W. C. & Moore, L. A. (1953). J. Dairy Sci. 36, 346.CrossRefGoogle Scholar
Freudenberg, K. (1965). Science, N.Y. 148, 595.CrossRefGoogle Scholar
Griffith, W. H. (1926). In Practical Physiological Chemistry, 12th ed., p. 854. [Hawk, P. B., Oser, B. L. and Summerson, W. H., editors.] London: J. &. A. Churchill.Google Scholar
Gupta, N. C. D. (1932). Indian J. vet. Sci. 2, 289.Google Scholar
Higuchi, T., Ito, Y. & Kawamura, I. (1967). Phytochemistry 6, 875.CrossRefGoogle Scholar
Jacobs, S. (1956). Analyst, Lond. 81, 502.Google Scholar
Jacobs, S. (1960). Analyst, Lond. 85, 257.CrossRefGoogle Scholar
Kleiber, M. (1965). In Energy Metabolism, p. 427. [Blaxter, K. L., editor.] London: Academic Press.Google Scholar
Luyken, R., Luyken-Koning, F. W. M. & Pikaar, N. A. (1964) Am. J. clin. Nutr. 14, 13.CrossRefGoogle Scholar
Magnus-Levy, A. (1907). Biochem. Z. 6, 502.Google Scholar
Martin, A. K. (1966). Br. J. Nutr. 20, 325.CrossRefGoogle Scholar
Mosonyi, L., Oblatt, E. & Surjan, M. G. (1948). Hung. Acta med. 1, 1.Google Scholar
Nehring, K. & Zelk, V. (1965). Arch. Tiernähr. 15, 25.CrossRefGoogle Scholar
Neisch, A. C. (1964). In Biochemistry of Phenolic Compounds, p. 295. [Harbourne, J. H., editor] London: Academic Press.Google Scholar
Patton, S. & Kesler, E. M. (1967). J. Dairy Sci. 50, 1505.CrossRefGoogle Scholar
Pazur, J. H. & DeLong, W. H. (1948). Scient. Agric. 28, 39.Google Scholar
Porter, R. (1965). Proc. Nutr. Soc. 24, vi.Google Scholar
Power, F. W. (1936). Proc. Soc. exp. Biol. Med. 33, 598.CrossRefGoogle Scholar
Ringer, A. J. (1911). J. biol Chem. 10, 327.CrossRefGoogle Scholar
Schiemann, R., Zeik, V. & Nehring, K. (1965). Arch. Tierernähr. 15, 81.CrossRefGoogle Scholar
Scott, T. W., Ward, P. F. V. & Dawson, R. M. C. (1964). Biochem. J. 90, 12.CrossRefGoogle Scholar
Snedecor, G. W. (1956). In Statistical Methods, 5th ed., p. 251. Ames, lowa, USA: The lowa State University Press.Google Scholar
Stein, W. H., Paladini, A. C., Hirs, C. H. W. & Moore, S. (1954). J. Am. chem. Soc. 76, 2848.CrossRefGoogle Scholar
Tetlow, J. A. & Wilson, R. L. (1964). Analyst, Lond. 89, 453.CrossRefGoogle Scholar
Topps, J. H., Goodall, E. D., Kay, R. N. B. & Maloiy, G. M. O. (1968). Proc. Nutr. Soc. 27, 53A.Google Scholar
Vasiliu, H., Timosencu, A., Zaimov, C. & Coteleu, V. (1938). Bul. Fac. sti. agric. Chişinˇu 2, 56.Google Scholar
Waite, K., Johnston, M. J. & Armstrong, D. G. (1964). J. agric. Sci., Camb. 62, 391.CrossRefGoogle Scholar
Worth, F. J. & Gupta, N. C. D. (1932). Indian J. vet Sci. 2, 281.Google Scholar