Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-19T03:21:36.987Z Has data issue: false hasContentIssue false

Tryptophan and the control of triglyceride and carbohydrate metabolism in the rat

Published online by Cambridge University Press:  25 February 2008

R. Fears
Affiliation:
Beecham Pharmaceuticals Research Division, Animal Health Research Centre, Walton Oaks, Tadworth, Surrey. KT20 7NT
Elspeth A. Murrellt
Affiliation:
Beecham Pharmaceuticals Research Division, Animal Health Research Centre, Walton Oaks, Tadworth, Surrey. KT20 7NT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Hepatic fatty acid synthesis, measured in vivo using 8H2O, was increased by a single dose of L-tryptophan (50 mg/kg body-weight) to both fed and fasted rats and by a supplement of tryptophan to the diet (2.5 g/kg diet for 7 d) when the rats were killed midway through the feeding period.

2. Additional dietary tryptophan was hypotriglyceridaemic in normal rats but exacerbated the hyper- triglyceridaemia in rats when lipoprotein clearance was impaired 24 h after an injection of Triton WR 1339 (Chromatography Services Co., Birkenhead, Cheshire).

3. The effects of tryptophan on hepatic fatty acid synthesis and the concentration of serum triglyceride were not directly related to the action of the amino acid on gluconeogenesis. A lack of correlation between inhibition of gluconeogenesis and enhancement of lipogenesis was confirmed using mercaptopicolinic acid, a specific inhibitor of phosphoenolpyruvate carboxykinase (EC 4.1.1.32).

4. DL-Tryptophan itself did not provide a significant contribution of substrate to the total rate of lipogenesis. Other possible explanations for the activity of tryptophan noted in the present experiments are discussed.

5. In conclusion, moderate intakes of tryptophan affect fatty acid and triglyceride metabolism under physiological conditions and it is proposed that the amino acid may be involved in the control of lipid metabolism in a variety of metabolic states.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1980

References

Ajdukiewicz, A. B., Keane, P., Pearson, J., Read, A. E. & Salmon, P. R. (1968). Scond. J. Gastroenterol. 3, 622.Google Scholar
Beaton, G.H. & Cheney, M. C. (1965). J. Nutr. 87, 125.Google Scholar
Blackshear, P. J., Holloway, P. A. H. & Alberti, K. G. M. M. (1975). Biochem. J. 14, 353.CrossRefGoogle Scholar
Bligh, E. G.& Dyer, W. 3. (1959). Can. J. Biochem. Physiol. 37, 911.Google Scholar
Burstein, M. & Scholnick, H. R. (1973). Adv. Lipid Res. 11, 68.Google Scholar
Di Tullio, N. W., Berkoff, C. E., Blank, B., Kostos, V., Stack, E. J. & Saunders, H. L. (1974). Biochem. J. 138, 387.Google Scholar
Duncombe, W. G. (1963). Biochem. J. 88, 7.CrossRefGoogle Scholar
Fears, R. & Morgan, B. (1976). Biochem. J. 158, 53.Google Scholar
Fernstrom, J. D., Larin, F. & Wurtman, R. J. (1971). Life Sci. 10, 813.Google Scholar
Floyd, J. C., Fajans, S. S., Conn, J. W., Knopf, R. F. & Rull, J. (1966). J. clin. Invest. 45, 1487.Google Scholar
Folch, J., Lees, M. & SloaneStanley, G. H. (1957). J. biol. Chem. 226, 497.CrossRefGoogle Scholar
Harris, L. J. & Kodicek, E. (1950). Br. J. Nutr. 4, xiii.Google Scholar
Hirata, Y., Kawachi, T. & Sugimura, T. (1967). Biochim. biophys. Acta 14, 233.Google Scholar
Horwitt, M. K., Harvey, C. C. & Dahm, C. H. (1975). Am. J. clin. Nutr. 28, 403.Google Scholar
Itaya, K. & Ui, M. (1965). J. Lipid Res. 6, 16.Google Scholar
Lakshmanan, M. R., Nepokroeff, C. M. & Porter, J. W. (1972). Proc. natn. Acad. Sci. U.S.A. 69, 3516.CrossRefGoogle Scholar
McDaniel, H. G., Doshell, B. R. & Reddy, W. J. (1973). Diabetes 22, 713.CrossRefGoogle Scholar
Mans, R. J. & Novelli, G. D. (1961). Archs Biochem. Biophys. 94, 48.Google Scholar
Miyazawa, S., Sakurai, T., Shindo, Y., Imura, M. & Hashimoto, T. (1975). J. Biochem., Tokyo 78, 139.CrossRefGoogle Scholar
Montgomery, R. (1957). Archs Biochem. Biophys. 67, 378.Google Scholar
Nikkila, E. A. (1971). In Metabolic Effects of Nicotinic Acid andits Derivatives, p. 488 [Grey, K. F. and Carlson, L. A., editors]. Bern: Hans Huber.Google Scholar
Nishizuka, Y., Ichiyama, A. & Hayaiski, O. (1970). Meth. Enzym. 17, 463.Google Scholar
Ontko, J. A. & Jackson, D. (1964). J. biol. Chem. 239, 3674.Google Scholar
Reed, E. B. & Tarver, H. (1975). Life Sci. 17, 1785.Google Scholar
Rosen, F. & Nichol, C. A. (1964). Adv. Enzyme Regul. 2, 115.Google Scholar
Sakurai, T., Miyazawa, S., Shindo, Y. & Hashimoto, T. (1974). Biochim. biophys. Acta 360, 275.Google Scholar
Scanu, A. M. (1965). Adv. Lipid Res. 3, 63.Google Scholar
Schapel, G. J., Edwards, K. D. G. & Neale, F. C. (1974). Progr. Biochem. Pharmacol. 9, 82.Google Scholar
Sellers, A., Bloxham, D. P., Munday, K. A. & Akhtar, M. (1974). Biochem. J. 138, 335.Google Scholar
Sirtori, C. R., Catapano, A. & Paoletti, R. (1977). Atherosclerosis Rev. 2, 133.Google Scholar
Smith, S. A, & Pogson, C. I. (1977). Biochem. J. 168, 495.Google Scholar
Taylor, M. (1976). Br. J. Pharmac. Chemother. 58, 117.Google Scholar
Technicon Instruments Corp. (1965). Laboratory Method File N78. Tarrytown, New York: Technicon Instruments Corp.Google Scholar
Trinder, P. (1969). Ann. clin. Biochem. 6, 24.Google Scholar
Wing, D. R., Salaman, M. R. & Robinson, D. S. (1966). Biochem. J. 99, 648.CrossRefGoogle Scholar
Wittman, J. S. (1976). J. Nutr. 106, 631.CrossRefGoogle Scholar
Young, J. W., Shrago, E. & Lardy, H. A. (1964). Biochemistry, N.Y. 3, 1687.CrossRefGoogle Scholar