Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T01:29:48.074Z Has data issue: false hasContentIssue false

True protein digestibility and amounts of endogenous protein measured with the 15N-dilution technique in piglets fed on peas (Pisum sativum) and common beans (Phaseolus vulgaris)

Published online by Cambridge University Press:  09 March 2007

J. Huisman
Affiliation:
TNO-Institute of Animal Nutrition and Physiology (TNO-Dept ILOB), PO Box 15, 6700 AA Wageningen, The Netherlands
Th. Heinz
Affiliation:
Forschungszentrum für Tierproduktion Dummerstorf-Rostock Bereich Tierernährung ‘Oskar Kellner’, Justus-von-Liebig-Weg, Rostock 2500, Germany
A. F. B. Van Der Poel
Affiliation:
Department of Animal Nutrition, Agricultural University, Haagsteeg 4, 6708 PM Wageningen, The Netherlands
P. Van Leeuwen
Affiliation:
TNO-Institute of Animal Nutrition and Physiology (TNO-Dept ILOB), PO Box 15, 6700 AA Wageningen, The Netherlands
W. B. Souffrant
Affiliation:
Forschungszentrum für Tierproduktion Dummerstorf-Rostock Bereich Tierernährung ‘Oskar Kellner’, Justus-von-Liebig-Weg, Rostock 2500, Germany
M. W. A. Verstegen
Affiliation:
Department of Animal Nutrition, Agricultural University, Haagsteeg 4, 6708 PM Wageningen, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The faecal and ileal true protein digestibilities of the raw pea (Pisum sativum) varieties finale and frijaune and the ileal true protein digestibility of steam-processed common beans (Phaseolus vulgaris) were measured in piglets using the 15N-dilution technique. The faecal true protein digestibility of both pea varieties was about 97. The ileal true protein digestibility was between 93 and 95, indicating that the pea protein is almost completely enzymically digested in the small intestine. The faecal apparent protein digestibility was 85 for both varieties while at the ileal level it was 79 and 74 respectively. The lower ileal apparent protein digestibility of peas can be attributed completely to the excretion of endogenous protein. The ileal apparent protein digestibility of toasted common beans was about zero (–4); the ileal true protein digestibility was about 66. This indicates that the protein of the common bean, although toasted, was highly resistant to enzymic digestion. It was calculated that per kg ingested bean protein, 340 g undigested bean protein and 700 g endogenous protein passed the terminal ileum. The results of the present study explain why in previous experiments a strongly reduced weight gain and even weight loss was observed in piglets fed on raw and toasted common beans.

Type
Protein Metabolism
Copyright
Copyright © The Nutrition Society 1992

References

REFERENCES

De Lange, C. F. M., Souffrant, W. B. & Sauer, W. C. (1990). Real ileal protein and amino acid digestibilities in feedstuffs for growing pigs as determined with the 15N-isotope dilution technique. Journal of Animal Science 68, 409418.Google Scholar
Huisman, J., Le Guen, M.-P., Gueguen, J., Beclen, G. M. & van der Poel, A. F. B. (1990 a). Apparent faecal and ileal digestibility of pea proteins in early-weaned piglets: comparison of raw peas and pea protein isolate. In Antinutritional effects of legume seeds in piglets, rats and chickens. PhD Thesis, Agricultural University of Wageningen, The Netherlands.Google Scholar
Huisman, J., van der Poel, A. F. B., Mouwen, J. M. V. M. & van Weerden, E. J. (1990 b). Effect of variable protein contents in diets containing Phaseolus vulgaris beans on performance, organ weights and blood variables in piglets, rats and chickens. British Journal of Nutrition 64, 755764.Google Scholar
Huisman, J., van der Poel, A. F. B., Verstegen, M. W. A. & van Leeuwen, P. (1990 c). Comparison of growth, nitrogen metabolism and organ weights in piglets and rats fed on diets containing Phaseolus vulgaris. British Journal of Nutrition 64, 743753.Google Scholar
Kesting, U. & Bolduan, G. (1989). Methodische Einflüsse bei der präzäkalen Vcrdaulichkeitsbestimmung (Methodological influences on the determination of precaecal digestibility). Archives of Animal Nutrition 39, 823831.Google Scholar
Kuhla, S. & Ebmeier, C. (1981). Untersuchungen zum Tanningehalt in Ackerbohnen (Tannin content of field beans). Archiv für Tierenährung 31, 573588.CrossRefGoogle Scholar
Netherlands Normalization Institute (1966). NEN Standards No. 3326: Determination of the Crude Fibre Content by the Abbreviated Method in Feedstuffs. Delft: Nederlands Standaardisatie Instituut.Google Scholar
Netherlands Normalization Institute (1985). NEN Standards No. 3572. Polarimetric Determination of the Starch Content in Feedstuffs. Ewers Method. Delft: Nederlands Standaardisatic Instituut.Google Scholar
Saini, H. S. (1989). Legume seed oligosaccharides. In Recent Advances of Research in Antinutritional Factors in Legume Seeds. pp. 329341 [Huisman, J.van der Poel, A. F. B. and Liener, I. E., editors]. Wageningen: PUDOC.Google Scholar
Santoro, L. G., Grant, G. & Pusztai, A. (1989). Degradation of glycoprotein II (Phaseolin), the major storage protein of Phaseolus vulgaris seeds. In Recent Advances of Research in Antinutritional Factors in Legume Seeds. pp. 363367 [Huisman, J.van der Poel, A. F. B. and Liener, I. E., editors]. Wageningen: PUDOC.Google Scholar
Souffrant, W. B., Darcy-Vrillon, B., Corring, T., Laplace, J. P., Köhler, R., Gebhardt, G. & Rerat, A. (1986). Recycling of endogenous nitrogen in the pig. Archiv für Tierernährung 36, 269274.Google Scholar
Sweeley, C. C., Bentley, R., Makita, M. & Wells, W. W. (1963). Gas-liquid chromatography of trimethylsilyl derivatives of sugars and related substances. Journal of the American Chemical Society 85, 24972507.Google Scholar
van der Poel, A. F. B., Aarts, H. L. M. & Stolp, W. (1989). Milling and air classification of two different types of peas – effects on the distribution of antinutritional factors. Netherlands Journal of Agricultural Science 37, 273278.CrossRefGoogle Scholar
van der Poel, A. F. B., Blonk, J., Huisman, J. & den Hartog, L. A. (1991). Effect of steam processing temperature and time on the protein nutritional value of Phaseolus vulgaris beans for swine. Livestock Production Science 28, 305319.CrossRefGoogle Scholar
van der Poel, A. F. B., Blonk, J., van Zuilichem, D. J. & van Oort, M. G. (1990 a). Thermal inactivation of lectins and trypsin inhibitors activity during steam processing of dry beans (Phaseolus vulgaris L) and effects on protein quality. Journal of the Science of Food and Agriculture 53, 215228.Google Scholar
van der Poel, A. F. B. & Huisman, J. (1988). Effect of steam treatment of a dry bean (Phaseolus vulgaris) with extreme high lectin content on ileal digestibility in pigs. In Proceedings of the 4th International Seminar on Digestive Physiology in the Pig, pp. 297301. Jablonna: Polish Academy of Sciences.Google Scholar
van der Poel, A. F. B., Mollee, P. W., Huisman, J. & Liener, I. E. (1990 b). Variations among species of animals in response to the feeding of heat-processed beans (Phaseolus vulgaris). 1. Bean processing and effects on growth, digestibility and organ weights in piglets. Livestock Production Science 25, 121135.Google Scholar
van Leeuwen, P., Huisman, J., Verstegen, M. W. A., Baak, M. J., van Kleef, D. J., van Weerden, E. J. & den Hartog, L. A. (1988). A new technique for collection of ileal chyme in pigs. In Proceedings of the 4th International Seminar on Digestive Physiology in the Pig, pp. 289296. Jablonna: Polish Academy of Sciences.Google Scholar
van Oort, M. G., Hamer, R. J. & Slager, E. A. (1989). The trypsin inhibitor assay: improvement of an existing method. In Recent Advances of Research in Antinutritional Factors in Legume Seeds, pp. 110113 [Huisman, J.van der Poel, A. F. B. and Liener, I. E., editors]. Wageningen: PUDOC.Google Scholar
Wünsche, I., Hennig, U., Meinl, K., Kreienbring, F. & Bock, H. D. (1982). Untersuchungen über Resorption und Verwertung von in Zäkum wachsender Schweine infundierten Aminosauren. Archiv für Tierernährung 32, 337348.Google Scholar
Wünsche, J., Herrmann, U., Meinl, M., Hennig, U., Kreienbring, F. & Zwierz, P. (1987). Einfluss exogener Faktoren auf die präzäkale Nährstoff- und Aminosäurenresorption, ermittelt an Schweinen mit Ileo-Rektal-Anastomosen. (Influence of exogenous factors on the precaecal nutrient and amino acid absorption of pigs with ileo-rectal anastomoses.) Archives of Animal Nutrition 37, 745764.Google Scholar
Zebrowska, T. (1973). The apparent digestibility of nitrogen and individual amino acids in the large intestine of the pig. Roczniki Nauk Rolniczych 97, 117123.Google Scholar
Zebrowska, T., Buraczewska, L. & Buraczewski, S. (1975). The apparent digestibility of amino acids in the small intestine and the whole digestive tract of pigs fed diets containing different sources of protein. Roczniki Nauk Rolniczych 99, 8798.Google Scholar