Hostname: page-component-599cfd5f84-cdgjw Total loading time: 0 Render date: 2025-01-07T05:50:02.939Z Has data issue: false hasContentIssue false

Substrate interactions on the intestinal mucosa: a concept for the regulation of intestinal digestion

Published online by Cambridge University Press:  09 March 2007

A. M. Ugolev
Affiliation:
Laboratory of Physiology of Nutrition, I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad, USSR
A. A. Gruzdkov
Affiliation:
Laboratory of Physiology of Nutrition, I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad, USSR
P. De Laey
Affiliation:
Laboratory of Physiology of Nutrition, I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad, USSR
V. V. Egorova
Affiliation:
Laboratory of Physiology of Nutrition, I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad, USSR
N. N. Iezuitova
Affiliation:
Laboratory of Physiology of Nutrition, I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad, USSR
G. G. Koltushkina
Affiliation:
Laboratory of Physiology of Nutrition, I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad, USSR
N. M. Timofeeva
Affiliation:
Laboratory of Physiology of Nutrition, I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad, USSR
E. Ch. Tulyaganova
Affiliation:
Laboratory of Physiology of Nutrition, I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad, USSR
V. A. Tsvetkova
Affiliation:
Laboratory of Physiology of Nutrition, I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad, USSR
M. Yu. Chernyakhovskaya
Affiliation:
Laboratory of Physiology of Nutrition, I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad, USSR
G. G. Shcherbakov
Affiliation:
Laboratory of Physiology of Nutrition, I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad, USSR
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The hydrolysis of glycyl-L-leucine, glycyl-L-tyrosine, tributyrin, sucrose, maltose, soluble starch and α- and β-glycerophosphates by everted segments of rat intestine was estimated separately or in combination.

2. A comparative study showed significant interaction between different substrates which affected their digestion.

3. Two types of interaction were identified: products of hydrolysis (1) affected the hydrolysis of homologous substances, e.g. methionine and alanine inhibited glycyl-L-leucine hydrolysis, maltose reduced glucoamylase (α-1, 4-glucan glucohydrolase; EC 3.2.1.3) activity (intracatenary interactions); (2) interfered with the hydrolysis of a different group of substances, e.g. tributyrin inhibited dipeptidase (glycyl-L-leucine hydrolase; EC 3.4.3.2) and alkaline phosphatase (EC 3.1.3.1), glycyl-L-leucine interfered with the activity of the latter enzyme (intercatenary interactions).

4. Mechanisms of interactions were suggested by the results of a comparison of the extent of inhibition or activation of two enzymes (glycyl-L-leucine hydrolase and alkaline phosphatase) in situ in everted intestinal segments or after solubilization with papain or Triton X-100, and different treatments known to affect allosteric sites of these enzymes.

5. Tributyrin and dipeptides were found to act on alkaline phosphatase as allosteric regulators. A discontinuity of the Arrhenius plot suggested the existence of different enzyme conformations which were re-arranged by tributyrin.

6. Substrate interactions in digestion were found in adult rat, cat, rabbit and hen. Substantial differences were found between classes (Aves and Mammalia), orders (rodents, lagomorphs and carnivores) and between age-groups within an animal strain (in this instance, for the rat).

7. These interactions are thought to be involved in the co-ordination of digestion with intestinal absorption and to regulate the time and site of subsequent hydrolysis.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1975

References

Arnesjö, B., Nilsson, A., Barrowman, J. & Borgstrom, B. (1969). Scand. J. Gastroenterol 4, 653.Google Scholar
Auricchio, S., Dahlqvist, A. & Semenza, G. (1963). Biochim. biophys. Acta 73, 582.Google Scholar
Borgströn, B., Dahlqvist, A., Lundh, G. & Sjövall, J. (1957). J. clin. Invest. 36, 1521.Google Scholar
Burston, D., Addison, J. M. & Matthews, D. M. (1972). Clin. Sci. 43, 823.Google Scholar
Cheng, B. & Matthews, D. M. (1970). J. Physiol., Lond. 210, 37P.Google Scholar
Cheng, B., Navab, F., Lis, M. T., Miller, N. & Matthews, D. M. (1971). Clin. Sci. 40, 247.Google Scholar
Cori, C. F. (1925). J. biol. Chem. 66, 691.Google Scholar
Cori, C. F. (1926). Proc. Soc. exp. Biol. Med. 24, 125.Google Scholar
Dahlqvist, A. & Thomson, D. L. (1963). Biochem. J. 89, 272.Google Scholar
Eggermont, F. (1968). The biochemical defects in sucrose intolerance and in glucose-galactose mal-absorption. PhD Thesis, Catholic University of Louvain, Louvain.Google Scholar
Fiske, C. H. & Subbarow, Y. (1925). J. biol. Chem. 66, 375.Google Scholar
Gerhart, J. C. & Pardee, A. B. (1961). Fedn Proc. Fedn Am. Sacs exp. Biol. 20, 224 Abstr.Google Scholar
Gerhart, J. C. & Pardee, A. B. (1962). J. biol. Chem. 237, 891.Google Scholar
Gerhart, J. C. & Pardee, A. B. (1964). Fedn Proc. Fedn Am. Socs exp. Biol. 23, 727.Google Scholar
Ghosh, N. K. & Fishman, W. H. (1968). Archs Biochem. Biophys. 126, 700.CrossRefGoogle Scholar
Gray, G. M. & Ingelfinger, F. J. (1965). J. clin. Invest. 44, 390.Google Scholar
Gray, G. M. & Ingelfinger, F. J. (1966). J. clin. Invest. 45, 388.Google Scholar
Holzer, H. & Duntze, W. (1971). A. Rev. Biochem. 40, 345.Google Scholar
Moore, S. & Stein, W. H. (1948). J. biol. Chem. 176, 367.Google Scholar
Ovdeichuk, R. A. & Ugolev, A. M. (1966). The Problems of Biochemical Adaptation. Moscow: Izdaniya NaukaGoogle Scholar
Schimke, R. T. & Doyle, D. (1970). A. Rev. Biochem. 39, 929.CrossRefGoogle Scholar
Timofeeva, N. M., Iezuitova, N. N., Chernyakhovskaya, M. Yu., De Laey, P. & Ugolev, A. M. (1967). Dokl. Akad. Nauk SSSR 176, 1451.Google Scholar
Ugolev, A. M. (1972). Membrane Digestion. Polysubstrate Processes, Organisation and Regulation. Leningrad: Izdaniya Nauka.Google Scholar
Ugolev, A. M. & Chernyakhovskaya, M. Yu. (1969). In Studies on Digestive System in Man [Ugolev, A. M., editor]Leningrad: Izdaniya Nauka.Google Scholar
Ugolev, A. M. & De Laey, P. (1973). Biochim. biophys. Acta 300, 105.CrossRefGoogle Scholar
Ugolev, A. M. & Iezuitova, N. N. (1969). In Studies on Digestive System in Man [Ugolev, A. M., editor]Leningrad: Izdaniya Nauka.Google Scholar
Ugolev, A. M., Iezuitova, N. N., Timofeeva, N. M. & Chernyakhovskaya, M. Yu. (1970). Nuhrung 14, 453.Google Scholar
Ugolev, A. M., Iezuitova, N. N., Timofeeva, N. M., Chernyakhovskaya, M. Yu. & De Laey, P. (1967). Tijdschr. Gastroent. 10, 152.Google Scholar
Ugolev, A. M. & Timofeeva, N. M. (1969). In Studies on Digestive System in Man [Ugolev, A. M., editor]Leningrad: Izdaniya Nauka.Google Scholar
Wilson, T. H. (1962). Intestid Absorption. Philadelphia and London: W. B. Saunders Co.Google ScholarPubMed