Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-08T08:50:33.020Z Has data issue: false hasContentIssue false

Studies on the roles of apotransferrin and caeruloplasmin (EC 1.16.3.1) on iron absorption in copper-deficient rats using an isolated vascularly- and luminally-perfused intestinal preparation

Published online by Cambridge University Press:  09 March 2007

D. E. Coppen
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
N. T. Davies
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Studies have been made on the effects of dietary copper on the iron and Cu distribution in rats and on the metabolic activity and absorptive capacity of intestines perfused both vascularly and luminally.

2. Rats maintained for 4–5 weeks on a Cu-deficient diet (0.4μg Cu/kg) had significantly lower plasma, liver and intestinal Cu concentrations and significantly reduced plasma caeruloplasmin and liver cytochrome c oxidase (EC 1.9.3.1) activity compared with controls receiving a Cu-supplemented diet (5 μg Cu/kg). Disturbances in Fe metabolism in Cu-deficient rats were evident as shown by a mild anaemia, significantly elevated hepatic Fe concentrations and hypoferraemia.

3. Intestinal glucose uptake from both the luminal perfusion medium (LPM) and vascular perfusion medium (VPM) was unaffected by Cu deficiency despite a significant (25–30 %) reduction in oxygen consumption. This was associated with a 40% decline in mucosal cytochrome c oxidase activity.

4. In studies of Fe absorption, Fe uptake from the LPM was unaffected by Cu deficiency while transfer of Fe to VPM was significantly reduced (50%) compared with control preparations. Addition of apotransferrin (1 g/l) to the VPM was without effect in preparations from control rats but significantly increased the transfer of Fe to the VPM in preparations from Cu-deficient rats without affecting Fe uptake from the LPM.

5. The addition of either human or porcine caeruloplasmin (together with apotransferrin) to the VPM, such that the resultant ferroxidase (EC 1.16.3.1) activity of the VPM supernatant fraction was four to five times that of normal rat plasma, was without effect on either Fe uptake, tissue retention or Fe transfer to the VPM by preparations from either Cu-deficient or control rats.

6. These findings offer no evidence in support of the proposed role for caeruloplasmin with its associated ferroxidase activity in Fe absorption in the rat.

Type
General Nutrition papers
Copyright
Copyright © The Nutrition Society 1988

References

Bannister, J. V. (1979). The Chemical Society Residential School - Inorganic Biochemistry, pp. 97102. London: Oxford University Press.Google Scholar
Bates, G. W., Workman, E. F. & Schlabach, M. R. (1973). Biochemical and Biophysical Research Communications 50, 8490.CrossRefGoogle Scholar
Bell, G. H., Davidson, J. N. & Scarborough, H. (1959). Textbook of Physiology and Biochemistry, 4th ed., p. 559. Edinburgh and London: E. & S. Livingstone Ltd.Google Scholar
Brittin, G. M. & Chee, Q. T. (1969). Journal of Laboratory and Clinical Medicine 74, 5359.Google Scholar
Bunn, H. F. (1971). Science 172, 10491050.CrossRefGoogle Scholar
Chase, M. S., Gubler, C. J., Cartwright, G. E. & Windrobe, M. M. (1952). Journal of Biological Chemistry 199, 757763.CrossRefGoogle Scholar
Coppen, D. E. & Davies, N. T. (1988). Quarterly Journal of Experimental Physiology (In the Press).Google Scholar
Crane, R. K. (1968). In Handbook of Physiology, sect. 6, Vol. 3, pp. 13231351 [Code, C. F., editor]. Washington, DC: American Physiological Society.Google Scholar
Curzon, G. & O'Reilly, S. (1960). Biochemical and Biophysical Research Communications 2, 284286.CrossRefGoogle Scholar
Dacie, J. V. & Lewis, S. M. (1975). Practical Haematology, 5th ed., p. 32. London, Edinburgh and New York: Churchill Livingstone.Google Scholar
Danks, D. M., Campbell, P. E., Stevens, B. J., Gillespie, J. M., Bloomfield, J. & Turner, B. (1972). Lancet i, 11001102.CrossRefGoogle Scholar
Davies, N. T. & Lawrence, C. B. (1986). Biochimica Biophysica Acta 848, 294304.CrossRefGoogle Scholar
Davies, N. T. & Reid, H. (1979). British Journal of Nutrition 41, 579589.CrossRefGoogle Scholar
Dowdle, E. B., Schacter, D. & Shenker, H. (1960). American Journal of Physiology 198, 609613.CrossRefGoogle Scholar
Dubois, R. S., Vaughan, G. D. & Roy, C. C. (1968). In Organ Perfusion and Preservation, pp. 863875 [Norman, J. C., editor]. New York: Appleton-Century Crofts.Google Scholar
Elvehjam, C. A. & Sherman, W. C. (1932). Journal of Biological Chemistry 98, 304319.Google Scholar
Evans, J. L. & Abraham, P. A. (1973). Journal of Nutrition 103, 196201.CrossRefGoogle Scholar
Forth, W. & Rummel, W. (1973). Physiological Reviews 53, 724792.CrossRefGoogle Scholar
Frieden, E. (1980). Ciba Foundation Symposium no. 79, pp. 93124. Amsterdam: Excerpta Medica.Google Scholar
Goya, N., Myazaki, S., Kodate, S. & Ushio, B. (1972). Blood 40, 239245.CrossRefGoogle Scholar
Greene, E. C. (1955). Anatomy of the Rat, p. 199. New York: Hafner Publishing Co.Google Scholar
Gubler, C. J., Lahey, M. E., Chase, M. S., Cartwright, G. E. & Wintrobe, M. M. (1952). Blood 7, 10751092.CrossRefGoogle Scholar
Hanson, P. J. & Parsons, D. S. (1976). Journal of Physiology 255, 775795.CrossRefGoogle Scholar
Hart, F. B., Steenbock, H., Waddell, J. & Elvehjam, C. A. (1928). Journal of Biological Chemistry 77, 797812.CrossRefGoogle Scholar
Hoadley, J. E. & Cousins, R. J. (1985). Proceedings of the Society for Experimental Biology and Medicine 180, 296302.CrossRefGoogle Scholar
Holmberg, C. G. & Laurel, C. B. (1947). Acta Chemica Scandinavica 1, 994–950.CrossRefGoogle Scholar
Houchin, O. B. (1958). Clinical Chemistry 4, 519523.CrossRefGoogle Scholar
Johnson, D. A., Osaki, S. & Frieden, E. (1967). Clinical Chemistry 13, 142150.CrossRefGoogle Scholar
Kavin, H., Levin, N. W. & Stanley, M. M. (1967). Journal of Applied Physiology 22, 604611.CrossRefGoogle Scholar
Kelman, G. R. & Nunn, J. F. (1966). Journal of Applied Physiology 21, 14841490.CrossRefGoogle Scholar
Løvstad, R. A. (1972). Acta Chemica Scandinavica 26, 28322836.CrossRefGoogle Scholar
Lowry, O. H., Roseborough, N. J., Farr, L. & Randall, R. J. (1951). Journal of Biological Chemistry 193, 265275.CrossRefGoogle Scholar
McDermott, J. A., Huber, C. T., Osaki, S. & Frieden, E. (1968). Biochimica Biophysica Acta 151, 541544.CrossRefGoogle Scholar
Manis, J. G. & Schacter, D. (1962). American Journal of Physiology 203, 7380.CrossRefGoogle Scholar
Marston, H. R. & Allen, P. A. (1967). Nature 215, 645646.CrossRefGoogle Scholar
Mills, C. F. & Dalgarno, A. C. (1970). In Trace Element Metabolism in Animals, p. 456 [Mills, C. F., editor]. Edinburgh and London: E. & S. Livingstone.Google Scholar
Nicholls, T. J., Leese, H. J. & Bronk, J. R. (1983). Bichemical Journal 212, 183187.Google Scholar
Osaki, S. & Johnson, D. A. (1969). Journal of Biological Chemistry 244, 57575758.CrossRefGoogle Scholar
Osaki, S., Johnson, D. A. & Frieden, E. (1966). Journal of Biological Chemistry 241, 27462751.CrossRefGoogle Scholar
Rice, E. W. (1960). Clinica Chimica Acta 5, 632636.CrossRefGoogle Scholar
Roeser, H. P., Lee, G. R., Nacht, S. & Cartwright, G. E. (1970). Journal of Clinical Investigation 49, 24082417.CrossRefGoogle Scholar
Schade, H. P., Bernier, G. M. & Conrad, M. E. (1969). British Journal of Haematology 17, 187190.CrossRefGoogle Scholar
Steel, L. (1981). Biochemical studies on the vascularly perfused digestive tract of the rat. PhD Thesis, University of Belfast.Google Scholar
Trinder, P. (1969). Analytical and Clinical Biochemistry 6, 2427.CrossRefGoogle Scholar
Uriel, J. (1957). Bulletin de la Societe de Chimie Biologique 39, Suppl., 105118.Google Scholar
Warner, R. C. & Weber, I. (1953). Journal of the American Chemical Society 75, 50945101.CrossRefGoogle Scholar
Williams, D. M., Kennedy, F. S. & Green, B. G. (1983). British Journal of Nutrition 50, 653660.CrossRefGoogle Scholar
Williams, D. M. & Lee, G. R. (1978). Metals and the Liver, pp. 241311. New York: Marcel Dekker.Google Scholar
Williams, D. M., Lee, G. R. & Cartwright, G. E. (1974). American Journal of Physiology 227, 10941097.CrossRefGoogle Scholar
Williams, R. B. & Mills, C. F. (1970). British Journal of Nutrition 24, 9891003.CrossRefGoogle Scholar
Windmueller, H. G. & Spaeth, A. E. (1980). Journal of Biological Chemistry 255, 107112.CrossRefGoogle Scholar
Windmueller, H. G., Spaeth, A. E. & Ganote, C. E. (1970). American Journal of Physiology 218, 197204.CrossRefGoogle Scholar