Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-30T01:44:14.620Z Has data issue: false hasContentIssue false

Studies on the control of gluconeogenesis in sheep: effect of glucose infusion

Published online by Cambridge University Press:  24 July 2007

G. J. Judson
Affiliation:
Department of Biochemistry and Nutrition, School of Rural Science, University of New England, Armidale, New South Wales 2351, Australia
R. A. Leng
Affiliation:
Department of Biochemistry and Nutrition, School of Rural Science, University of New England, Armidale, New South Wales 2351, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Effect of glucose infusions on the rate of gluconeogenesis, as indicated by changes in the irreversible loss of plasma glucose, synthesis of glucose from ruminal propionate or fixation of blood bicarbonate into glucose, has been examined in sheep.

Sheep, feeding at hourly intervals, received intravenous infusions of [U-14C]glucose, NaH14CO3, or [6-3H]glucose, infused simultaneously with an intraruminal infusion of [2-14C]propionate. Glucose (4–144 mg/min) was infused intravenously at a single rate or at two different successive rates of equal duration. The glucose infusions were over a 6 h period and followed estimates of pre-infusion kinetic measurements.

2. The infusion of glucose suppressed endogenous glucose production in direct proportion to that infused for sheep given diets of lucrene or wheat. The maximum rate of suppression recorded was equivalent to about 50–60% of the endogenous production rate of glucose.

Transfer rates of carbon-14 from blood bicarbonate or ruminal propionate to plasma glucose were reduced during glucose loadings. The results indicate that administration of glucose was more effective in suppressing the synthesis of glucose from substrates other than ruminal propionate.

3. The percentage of glucose carbon derived from blood bicarbonate was lower in sheep given wheat than in sheep given lucerne. It was suggested that this difference may have been due to absorption of glucose from the alimentary canal of sheep on the former ration. Approximately 8% of the wheat starch may have escaped fermentation and been absorbed as glucose in these animals.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1973

References

REFERENCES

Annison, E. F. (1960). Aust. J. agric. Sci. 11, 58.CrossRefGoogle Scholar
Annison, E. F., Brown, R. E., Leng, R. A., Lindsay, D. B. & West, C. E. (1967). Biochem. J. 104, 135.CrossRefGoogle Scholar
Annison, E. F. & Lindsay, D. B. (1961). Biochem. J. 78, 777.Google Scholar
Annison, E. F., Lindsay, D. B. & White, R. R. (1963). Biochem. J. 88, 243.CrossRefGoogle Scholar
Annison, E. F. & White, R. R. (1961). Biochem. J. 80, 162.Google Scholar
Armstrong, D. G. & Beever, D. E. (1969). Proc. Nutr. Soc. 28, 121.Google Scholar
Baile, C. A., Mayer, J., Mahone, A. W. & McLaughlin, C. (1969). J. Dairy Sci. 52, 101.CrossRefGoogle Scholar
Ballard, F. J. (1965). Comp. Biochem. Physiol. 14, 437.Google Scholar
Ballard, F. J., Hanson, R. W. & Kronfeld, D. S. (1969). Fedn Proc. Fedn Am. Socs exp. Biol. 28, 218.Google Scholar
Ballard, F. J. & Oliver, I. T. (1964). Biochem. J. 92, 131.CrossRefGoogle Scholar
Barker, J. N. & Britton, H. G. (1957). J. Physiol., Lond. 138, 3P.Google Scholar
Bartley, J. C. & Black, A. L. (1966). J. Nutr. 89, 317.CrossRefGoogle Scholar
Bartley, J. C., Freedland, R. A. & Black, A. L. (1966). Am. J. vet. Res. 27, 1243.Google Scholar
Beever, D. E., Coehlo da Silva, J. F. & Armstrong, D. G. (1970). Proc. Nutr. Soc. 29, 43A.Google Scholar
Bergman, E. N. (1964). Nature, Lond. 202, 1333.Google Scholar
Bergman, E. N. (1968). Am. J. Physiol. 215, 865.Google Scholar
Bittar, E. E. (1964). Cell pH. Washington: Butterworths.Google Scholar
Black, A. L., Egan, A. R., Anand, R. S. & Chapman, T. E. (1968). In Isotope Studies on the Nitrogen Chain p. 247. Vienna: I.A.E.A.Google Scholar
Boda, J. M. (1964). Am. J. Physiol. 206, 419.CrossRefGoogle Scholar
Cahill, G. F. Jr, Ashmore, J., Renold, A. E. & Hastings, A. B. (1959). Am. J. Med. 26, 264.CrossRefGoogle Scholar
Clare, N. T. & Stevenson, A. E. (1964). N.Z. Jl agric. Res. 7, 198.Google Scholar
Corbett, J. L., Farrell, D. J., Leng, R. A., McClymont, G. L. & Young, B. A. (1971). Br. J. Nutr. 26, 277.CrossRefGoogle Scholar
Exton, J. H. & Park, C. R. (1967). J. biol. Chem. 242, 2622.Google Scholar
Exton, J. H., Mallette, L. E., Jefferson, L. S., Wong, E. H. A., Friedmann, N., Miller, T. B. & Park, C. R. (1970). Recent Prog. Horm. Res. 26, 411.Google Scholar
Felts, J. M. & Mayes, P. A. (1967). Biochem. J. 105, 735.Google Scholar
Filsell, O. H., Jarrett, I. G., Taylor, P. H. & Keech, D. B. (1969). Biochim. biophys. Acta 184, 54.Google Scholar
Ford, E. J. H. (1962). J. agric. Sci., Camb. 59, 67.Google Scholar
Ford, E. J. H. (1965). J. agric. Sci., Camb. 65, 41.CrossRefGoogle Scholar
Friedmann, B., Goodman, E. H. & Weinhouse, S. (1970). Endocrinology 86, 1264.Google Scholar
Gurpide, E., Mann, J. & Lieberman, S. (1963). J. clin. Endocr. Metab. 23, 1155.Google Scholar
Hanson, R. W. & Ballard, F. J. (1967). Biochem. J. 105, 529.CrossRefGoogle Scholar
Hetenyi, G. Jr & Wrenshall, G. A. (1968). Can. J. Physiol. Pharmac. 46, 391.Google Scholar
Horino, M., Machlin, L. J., Hertelendy, F. & Kipnis, D. M. (1968). Endocrinology 83, 118.Google Scholar
Huggett, A. St G. & Nixon, D. A. (1957). Biochem.J. 66, 12P.Google Scholar
Ishiwata, K., Hetenyi, G. Jr & Vranic, M. (1969). Diabetes 18, 820.Google Scholar
Jones, G. B. (1965). Annlyt. Biochem. 12, 249.Google Scholar
Judson, G. J., Anderson, E., Luick, J. R. & Leng, R. A. (1968). Br. J. Nutr. 22, 69.Google Scholar
Judson, G. J. & Leng, R. A. (1968). Proc. Aust. Soc. Anim. Prod. 7, 354.Google Scholar
Judson, G. J. & Leng, R. A. (1970). Proc. Aust. biochem. Soc. 3, 41.Google Scholar
Kerr, R. W. (editor) (1950). Chemistry and Industry of Starch p. 99. New Pork: Academic Press.Google Scholar
Khachadurian, A. K., Kamelian, M. & Adrouni, B. (1967). Am. J. Physiol. 213, 1385.Google Scholar
Krebs, H. (1964). Proc. R. Soc. B 159, 545.Google Scholar
Leng, R. A. (1970). Adv. vet. Sci. 14, 209.Google Scholar
Leng, R. A. & Leonard, G. J. (1965). Br. J. Nutr. 19, 469.Google Scholar
Leng, R. A., Steel, J. W. & Luick, J. R. (1967). Biochem. J. 103, 785.Google Scholar
MacRae, J. C. & Armstrong, D. G. (1969). Br. J. Nutr. 23, 377.Google Scholar
Manns, J. G. & Boda, J. M. (1967). Am. J. Physiol. 212, 747.Google Scholar
Ørskov, E. R. (1969). Revta cub. Cienc. agric. 3, 1.Google Scholar
Ørskov, E. K., Fraser, C. & Kay, R. N. B. (1969). Br. J. Nutr. 23, 217.Google Scholar
Potter, E. I., Purser, D. B. & Cline, J. H. (1968). J. Nutr. 95, 655.CrossRefGoogle Scholar
Reid, R. L. (1958). Aust. J. agric. Res. 9, 788.CrossRefGoogle Scholar
Roughton, F. J. W. (1935). Physiol. Rev. 15, 241.Google Scholar
Ruderman, N. B. & Herrera, M. G. (1968). Am. J. Physiol. 214, 1436.Google Scholar
Scrutton, M. C. & Utter, M. F. (1968). A. Rev. Biochem. 37, 249.Google Scholar
Škarda, J. & Bartoš, S. (1969). J. Endocr. 44, 115.Google Scholar
Steel, J. W. & Leng, R. A. (1968). Proc. Aust. Soc. Anim. Prod. 7, 342.Google Scholar
Steele, R. (1966). Ergebn. Physiol. 57, 91.Google Scholar
Steele, R., Bishop, J. S., Dunn, A., Altszuler, N., Rathgeb, I. & de Bodo, R. C. (1965). Am. J. Physiol. 208, 301.Google Scholar
Szabo, A. J., Maier, J. J., Szabo, O. & Camerini-Davalos, R. A. (1969). Diabetes 18, 232.CrossRefGoogle Scholar
Tait, J. F. (1963). J. clin. Endocr. Metab. 23, 1285.Google Scholar
Tucker, R. E., Mitchell, G. E. Jr & Little, C. O. (1968). J. Anim. Sci. 27, 824.Google Scholar
Vaughan, M. (1961). J. Lipid Res. 2, 293.Google Scholar
West, C. E. & Annison, E. F. (1964). Biochem. J. 92, 573.Google Scholar
West, C. E. & Passey, R. P. (1967). Biochem. J. 102, 58.CrossRefGoogle Scholar
Williamson, J. N. (1967). Adv. Enzyme Hegul. 5, 229.Google Scholar
Young, J. W., Thorp, S. L. & De Lumen, H. Z. (1969). Biochem. J. 114, 83.CrossRefGoogle Scholar