Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-12-01T12:04:36.388Z Has data issue: false hasContentIssue false

Studies of the toxicity of copper to pigs

1. Effects of oral supplements of zinc and iron salts on the development of copper toxicosis

Published online by Cambridge University Press:  09 March 2007

N. F. Suttle
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen
C. F. Mills
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Six groups of four litter-mate female Large White pigs of about 17 kg live weight were allocated according to a 2×2 factorial design in each of two experiments in which rations containing 0 or 750 ppm copper were offered with either 0 and 500 ppm zinc, or 0 and 750 ppm iron. 2. Severity of toxicosis was assessed by determining aspartate transaminase activity in serum, observing the incidence of jaundice and determining the hemoglobin concentration in whole blood and Cu concentration in serum and liver. 3. Addition of 750 ppm Cu to the diet caused toxicity in nine out of twelve animals; it was most severe after about 4 weeks when two-to five-fold increases in serum Cu and aspartate transaminase levels were found and seven pigs were jaundiced. Serum Cu and aspartate transaminase concentrations and degrees of jaundice were apparently interrelated and returned to normal levels after 6 weeks, suggesting adaptation to the high Cu intake. Growth depression and a microcytic hypochromic anaemia persisted. 4. Addition of 500 ppm Zn or 750 ppm Fe in the presence of 750 ppm Cu eliminated jaundice and produced serum Cu and aspartate transaminase concentrations similar to control values after 4 weeks. Only supplementary Fe afforded protection against anaemia. 5. Variability in the response of the pig to Cu supplements could be partly due to variations in the intake of Fe and Zn. The addition of Fe and Zn supplements to pig diets supplemented with Cu would probably reduce the small risk of causing Cu poisoning.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1966

References

REFERENCES

Abderhalden, R. (1961). Clinical Enzymology. London: van Nostrand.Google Scholar
Allen, M. M. & Harding, J. D. J. (1962). Vet. Rec. 74, 1.Google Scholar
Al-Ubaidi, Y. Y. & Sullivan, T. W. (1963). Poult. Sci. 42, 718.Google Scholar
Anonymous (1963). Pig Fmg, 11, no. 4, p. 25.Google Scholar
Barber, R. S., Braude, R. & Mitchell, K. G. (1955). Br. J. Nutr. 9, 378.CrossRefGoogle Scholar
Barber, R. S., Braude, R. & Mitchell, K. G. (1960). Br. J. Nutr. 14, 499.CrossRefGoogle Scholar
Barber, R. S., Braude, R., Mitchell, K. G., Rook, J. A. F. & Rowell, J. G. (1957). Br. J. Nutr. 11, 70.CrossRefGoogle Scholar
Barden, P. J. & Robertson, A. (1962). Vet. Rec. 74, 252.Google Scholar
Bellis, D. B. (1961). Anim. Prod. 3, 89.CrossRefGoogle Scholar
Bowland, J. P., Braude, R., Chamberlain, A. G., Glascock, R. F. & Mitchell, K. G. (1961). Br. J. Nutr. 15, 59.CrossRefGoogle Scholar
Bowler, R. J., Braude, R., Campbell, R. C., Craddock-Turnbull, J. N., Fieldsend, H. F., Griffiths, E. K., Lucas, I. A. M., Mitchell, K. G., Nickalls, N. J. D. & Taylor, J. H. (1955). Br. J. Nutr. 9, 358.CrossRefGoogle Scholar
Braude, R., Townsend, J. M., Harrington, G. & Rowell, J. G. (1962). J. agric. Sci., Camb., 58, 251.CrossRefGoogle Scholar
Breslow, E. & Gurd, F. R. N. (1963). J. biol. Chem. 238, 1332.CrossRefGoogle Scholar
Britton, W. M. & Hill, C. H. (1964). Fedn Proc. Fedn Am. Socs exp. Biol. 23, 133.Google Scholar
Bunch, R. J., Speer, V. C., Hays, V. W., Hawbaker, J. H. & Catron, D. V. (1961). J. Anim. Sci. 20, 723.CrossRefGoogle Scholar
Bunch, R. J., Speer, V. C., Hays, V. W. & McCall, J. T. (1963). J. Anim. Sci. 22, 56.CrossRefGoogle Scholar
Buntain, D. (1961). Vet. Rec. 73, 707.Google Scholar
Cassidy, J. & Eva, J. K. (1958). Proc. Nutr. Soc. 17, xxxi.Google Scholar
Copp, D. H. & Greenberg, D. M. (1946). J. biol. Chem. 164, 389.CrossRefGoogle Scholar
Cornelius, C. E., Bishop, J., Switzer, J. & Rhode, E. A. (1959). Cornell Vet. 49, 116.Google Scholar
Cox, C. D. & Hale, O. M. (1962). J. Nutr. 77, 225.CrossRefGoogle Scholar
Cox, D. H. & Harris, D. L. (1960). J. Nutr. 70, 514.CrossRefGoogle Scholar
Cox, D. H. & Harris, D. L. (1962). J. Nutr. 78, 415.CrossRefGoogle Scholar
Dammers, J. & Stolk, K. (1959). Versl. landbouwk. Onderz. Ned. no. 65. 12. 1.Google Scholar
Eden, A. & Green, H. H. (1940). Biochem. J. 34, 1202CrossRefGoogle Scholar
Elvehjem, C. A. & Hart, E. B.. (1932). J. biol. Chem. 95, 363.CrossRefGoogle Scholar
Fagan, V. J., Iles, R. D., Slowitsky, Z. & Brocksopp, R. E. (1961). J. agric. Sci., Camb., 56, 161.CrossRefGoogle Scholar
Gitlow, S. E., Beyers, M. R. & Colmore, J. P. (1952). J. Lab. clin. Med. 40, 541.Google Scholar
Grant-Frost, D. R. & Underwood, E. J. (1958). Aust. J. exp. Biol. med. Sci. 36, 339.CrossRefGoogle Scholar
Grey, L. F. & Ellis, G. H. (1950). J. Nutr. 40, 441.CrossRefGoogle Scholar
Hart, E. B., Steenbock, H., Waddell, J. & Elvehjem, C. A. (1928). J. biol. Chem. 77, 797.CrossRefGoogle Scholar
Hawbaker, J. A., Speer, V. C., Hays, V. W. & Catron, D. V. (1961). J. Anim. Sci. 20, 163.CrossRefGoogle Scholar
Hill, C. H. & Matrone, G. (1961). J. Nutr. 73, 425.CrossRefGoogle Scholar
Hill, C. H., Matrone, G., Payne, W. L. & Barber, C. W. (1963). J. Nutr. 80, 227.CrossRefGoogle Scholar
Hill, C. H., Matrone, G. & Starcher, B. (1963). Proc. int. Nutr. Congr. VI. Edinburgh, p. 521.Google Scholar
Karmen, A., Wróblewski, F. & LaDue, J. S. (1955). J. clin. Invest. 34, 126.CrossRefGoogle Scholar
Kennedy, R. P. (1927). J. biol. Chem. 74, 385.CrossRefGoogle Scholar
King, J. O. L. (1960). Vet. Rec. 72, 304.Google Scholar
King, J. O. L. (1963). Vet. Rec. 75, 651.Google Scholar
Kirchgessner, M. & Weser, U. (1963). Z. Tierernähr. Futtermittelk. 18, 181.CrossRefGoogle Scholar
Lucas, I. A. M. & Calder, A. F. C. (1957 a). Proc. Nutr. Soc. 16, i.Google Scholar
Lucas, I. A. M. & Calder, A. F. C. (1957 b). J. agric. Sci., Camb., 49, 184.CrossRefGoogle Scholar
McCall, J. T., Mason, J. V. & Davis, G. K. (1961). J. Nutr. 74, 51.CrossRefGoogle Scholar
Magee, A. C. & Matrone, G. (1960). J. Nutr. 72, 233.CrossRefGoogle Scholar
Malmström, B. G. (1956). Meth. biochem. Analysis, 3, 327.CrossRefGoogle Scholar
Marston, H. R. (1952). Physiol. Rev. 32, 66.CrossRefGoogle Scholar
Nicholas, J. W. (1951). Biochem. J. 50, 1.CrossRefGoogle Scholar
O'Hara, P. J., Newman, A. P. & Jackson, R. (1960). Aust. vet. J. 36, 225.CrossRefGoogle Scholar
Plocke, D. J. & Vallee, B. L. (1962). Biochemistry, N.Y., 1, 1039.CrossRefGoogle Scholar
Ritchie, H. D., Luecke, R. W., Baltzer, B. V., Miller, E. R., Ullrey, D. E. & Hoefer, J. A. (1963). J. Nutr. 79, 117.CrossRefGoogle Scholar
Smith, S. E. & Larson, E. J. (1946). J. biol. Chem. 163, 29.CrossRefGoogle Scholar
Suttle, N. F. (1964). Dietary factors affecting coppert oxicosis in the pig. PhD Thesis, University of Aberdeen.Google Scholar
Suttle, N. F. & Mills, C. F. (1963). Proc. Nutr. Soc. 23, ix.Google Scholar
Suttle, N. F. & Mills, C. F. (1966). Br. J. Nutr. 20, 149.CrossRefGoogle Scholar
Todd, J. R. & Thompson, R. H. (1963). Br. vet. J. 119, 161.CrossRefGoogle Scholar
Vallee, B. L., Wacker, W. E. C., Bartholomoy, A. F. & Hoch, F. L. (1957). New Engl. J. Med. 257, 1055.CrossRefGoogle Scholar
Van Reen, R. (1953). Arch. Biochem. Biophys. 46, 337.CrossRefGoogle Scholar
Wallace, H. D., McCall, J. T., Bass, B. & Combs, G. E. (1960). J. Anim. Sci. 19, 1153.CrossRefGoogle Scholar
Whitby, L. E. H. & Britton, C. J. C. (1950). Disorders of the Blood. London: J. and A. Churchill Ltd.Google Scholar
Wolff, H. (1954). Biochem, Z. 325, 267.Google Scholar
Wretlind, B., Orstadius, K. & Lindberg, P. (1959). Zentbl. vet. Med. 6, 693.Google Scholar