Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-07T16:31:30.319Z Has data issue: false hasContentIssue false

Stability of tryptophan during food processing and storage

1. Comparative losses of tryptophan, lysine and methionine in different model systems

Published online by Cambridge University Press:  24 July 2007

Henrik K. Nielsen
Affiliation:
Research Department, Nestlé Products Technical Assistance Co. LtdCH-1814 La-Tour-de-Peilz, Switzerland
D. De Weck
Affiliation:
Research Department, Nestlé Products Technical Assistance Co. LtdCH-1814 La-Tour-de-Peilz, Switzerland
P. A. Finot
Affiliation:
Research Department, Nestlé Products Technical Assistance Co. LtdCH-1814 La-Tour-de-Peilz, Switzerland
R. Liardon
Affiliation:
Research Department, Nestlé Products Technical Assistance Co. LtdCH-1814 La-Tour-de-Peilz, Switzerland
R. F. Hurrell
Affiliation:
Research Department, Nestlé Products Technical Assistance Co. LtdCH-1814 La-Tour-de-Peilz, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The stability of tryptophan was evaluated in several different food model systems using a chemical method (high pressure liquid chromatography after alkaline-hydrolysis) and rat assays. Losses of tryptophan were compared with the losses of lysine and methionine.

2. Whey proteins stored in the presence of oxidizing lipids showed large losses of lysine and extensive methionine oxidation but only minor losses of tryptophan as measured chemically. The observed decrease in bioavailable tryptophan was explained by a lower protein digestibility.

3. Casein treated with hydrogen peroxide to oxidize all methionine to methionine sulphoxide showed a 9% loss in bioavailable tryptophan.

4. When casein was reacted with caffeic acid at pH 7 in the presence of monophenol monooxygenase (tyrosinase; EC 1.14.18.l), no chemical loss of tryptophan occurred, although fluorodinitrobenzene-reactive lysine fell by 23%. Tryptophan bioavailability fell IS%, partly due to an 8% reduction in protein digestibility.

5. Alkali-treated casein (0.15 M-sodium hydroxide, 80°,4 h) did not support rat growth. Chemically-determined tryptophan, available tryptophan and true nitrogen digestibility fell 10, 46 and 23% respectively. Racemization of tryptophan was found to be 10% (D/(D+L)).

6. In whole-milk powder, which had undergone ‘early’ or ‘advanced’ Maillard reactions, tryptophan, determined chemically or in rat assays, was virtually unchanged. Extensive lysine losses occurred.

7. It was concluded that losses of tryptophan during food processing and storage are small and of only minor nutritional importance, especially when compared with much larger losses of lysine and the more extensive oxidation of methionine.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

Anderson, G. H., Li, G. S. K., Jones, J. D. & Bender, F. (1975). Journal of Nutrition 105, 317325.CrossRefGoogle Scholar
Association of Official Analytical Chemists. (1980). Official Methods of Analysis of the Association of Official Analytical Chemists, p. 774 [Horwitz, W., editor]. Washington DC: AOAC.Google Scholar
Baker, D. H., Allen, H. K., Boomgaardt, J., Graber, G. & Norton, H. W. (1971). Journal of Animal Science 33, 4246.CrossRefGoogle Scholar
Berg, C. P. (1959). In Protein and Amino Acid Nutrition, pp. 5796 [Albanese, A. A., editor]. New York: Academic Press.Google Scholar
Booth, V. H. (1971). Journal of the Science of Food and Agriculture 22, 658666.CrossRefGoogle Scholar
Carpenter, K. J. (1960). Biochemical Journal 77, 604610.CrossRefGoogle Scholar
Cuq, J.-L., Besancon, P., Chartier, L. & Cheftel, C. (1978). Food Chemistry 3, 85101.CrossRefGoogle Scholar
de Weck, D. & Finot, P. A. (1983). International Journal for Vitamin and Nutrition Research 53, 234.Google Scholar
Dworschak, E. & Hegedüs, M. (1974). Acta Alimentaria 6, 337347.Google Scholar
Dworschak, E. & Oersi, F. (1977). Acta Alimentaria 6, 5971.Google Scholar
Finney, D. J. (1964). Statistical Methods in Biological Assay, 2nd ed. New York: Hafner Publishing Co.Google Scholar
Finot, P. A., Deutsch, R. &Bujard, E. (1981). In Progress in Food and Nutrition Science, vol. 5, Maillard Reactions in Foods, pp. 345355 [Eriksson, C., editor]. Oxford: Pergamon Press.Google Scholar
Finot, P. A. & Magnenat, E. (1981). In Progress in Food and Nutrition Science vol. 5, Maillard Reactions in Foods, pp. 193207 [Eriksson, C., editor]. Oxford: Pergamon Press.Google Scholar
Finot, P. A., Magnenat, E., Guignard, G. & Hurrell, R. F. (1982). International Journal for Vitamin and Nutrition Research 52, 226.Google Scholar
Food and Agriculture Organization. (1970). Amino Acid Content of Foods and Biological Data on Proteins. Rome: FAO.Google Scholar
Gruen, L. C. & Nicholls, P. W. (1972). Analytical Biochemistry 44, 519522.CrossRefGoogle Scholar
Gupta, J. D. & Elvehjem, C. A. (1957). Journal of Nutrition 62, 313324.CrossRefGoogle Scholar
Hachimori, Y., Horinishi, H., Kurihara, K. & Shibata, K. (1964). Biochimica Biophysica Acta 93, 346360.CrossRefGoogle Scholar
Harrison, B. N., Pla, G. W., Clark, G. A. & Fritz, J. C. (1976). Cereal Chemistry 53, 7884.Google Scholar
Hayashi, R. & Kameda, I. (1980). Agricultural and Biological Chemistry 44, 891895.Google Scholar
Hurrell, R. F. (1980). In Food and Health–Science and Technology, pp. 369388, [Birch, G. G. and Parker, K. J., editors]. London: Applied Science Publishers.CrossRefGoogle Scholar
Hurrell, R. F. (1984). In Developments in Food Proteins, vol. 3, pp. 213244 [Hudson, B. J. F., editor]. London: Applied Science Publishers.Google Scholar
Hurrell, R. F. & FinotP. A, P. A, (1984). In Nutritional and Metabolic Aspects of Food Safety, Advances in Experimental Medicine and Biology, vol. 177, pp. 423425. [Friedman, M., editor]. New York: Plenum Press.Google Scholar
Hurrell, R. F., Finot, P. A. & Cuq, J. L. (1982). British Journal of Nutrition 47, 191211.CrossRefGoogle Scholar
Hurrell, R. F., Finot, P. A. & Ford, J. E. (1983). British Journal of Nutrition 49, 343354.CrossRefGoogle Scholar
Hurrell, R.. F., Finot, P. A., Jaussan, V. & Cuq, J. L. (1981). XX International Congress of Nutrition, San Diego, CA., USA, Abstr. 260.Google Scholar
Kanazawa, K., Danno, G. & Natake, M. (1975). Journal of Nutritional Science and Vitaminology 21, 373382.CrossRefGoogle Scholar
Karayiannis, N. I., MacGregor, J. T. & Bjeldanes, L. F. (1979). Food and Cosmetics Toxicology 17, 591604.CrossRefGoogle Scholar
Khayat, A. & Schwall, D. (1983). Food Technology 37, 130140.Google Scholar
Liardon, R. & Hurrell, R. F. (1983). Journal of Agricultural and Food Chemistry 31, 432437.CrossRefGoogle Scholar
Liardon, R., Ledermann, S. & Ott, U. (1981). Journal of Chromatography 203, 385395.CrossRefGoogle Scholar
Mauron, J. (1981). In Progress in Food and Nutrition Science, vol. 5, Maillard Reactions in Food, pp. 535 [Eriksson, C., editor]. Oxford: Pergamon Press.Google Scholar
Mauron, J., Mottu, F., Bujard, E. & Egli, R. H. (1955). Archives of Biochemistry and Biophysics 59, 433451.CrossRefGoogle Scholar
Moore, S. (1963). Journal of Biological Chemistry 238, 235237.CrossRefGoogle Scholar
Nielsen, H. K., Finot, P. A. & Hurrell, R. F. (1985 a). British Journal of Nutrition 53, 7586.CrossRefGoogle Scholar
Nielsen, H. K. & Hurrell, R. F. (1985). Journal of the Science of Food and Agriculture (In the Press).Google Scholar
Nielsen, H. K., Klein, A. & Hurrell, R. F. (1985 b). British Journal of Nutrition 53, 293300.CrossRefGoogle Scholar
Nielsen, H. K., Löliger, J. & Hurrell, R. F. (1985 c). British Journal of Nutrition 53, 6173.CrossRefGoogle Scholar
O'Brien, P. J. (1966). Biochemical Journal 101, 12P13P.Google Scholar
Ohara, I., Otsuka, S. -I., Yugari, Y. & Ariyoshi, S. (1980). Journal of Nutrition 110, 634640.CrossRefGoogle Scholar
Peret, J., Macaire, I. & Chanez, M. (1973). Journal of Nutrition 103, 866874.CrossRefGoogle Scholar
Pierpoint, W. S. (1971). Rothamsted Experimental Station Report for 1970, part 2, 199218.Google Scholar
Possompes, B., Cuq, J. L., Guenoun, D. & Besancon, P. (1983). Food Chemistry 11, 1526.CrossRefGoogle Scholar
Prendergast, (1974). Food Trade Review 44 1421.Google Scholar
Provansal, M. M. P., Cuq, J. L. & Cheftel, C. (1975). Journal of Agricultural and Food Chemistry 23, 938943.CrossRefGoogle Scholar
Rasekh, J., Stillings, B. R. & Sidwell, V. (1972). Journal of Food Science 37, 423425.CrossRefGoogle Scholar
Roundy, Z. P. (1958). Journal of Dairy Science 41, 14601465.CrossRefGoogle Scholar
Scarbieri, V. C., Amaya, J., Tanaka, M. & Chichester, C. O. (1973). Journal of Nutrition 103, 17311738.CrossRefGoogle Scholar
Steinhart, H. (1979). Landwirtschaftliche Forschung 32, 6373.Google Scholar
Steinhart, H. & Kirchgessner, M. (1980). Proceedings of 3rd EAAP Symposium on Protein Metabolism and Nutrition pp. 312317, European Association for Animal Production Publication no. 27. Rome: EAAP.Google Scholar
Synge, R. L. M. (1975). Qualitas Plantarum– Plant Foods for Human Nutrition 24, 337350.CrossRefGoogle Scholar
Tannenbaum, S. R., Ahern, M. & Bates, R. P. (1970). Food Technology 24, 9699.Google Scholar
Tovar, L. R. (1981). The effect of treatment with alkali on the nutritional characteristics of protein. PhD Thesis, University of California, Berkeley.Google Scholar
Wilkening, M. C. & Schweigert, B. S. (1947). Journal of Biological Chemistry 171, 209212.CrossRefGoogle Scholar