Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T03:31:43.612Z Has data issue: false hasContentIssue false

Stability of the mRNA encoding some pancreatic hydrolases is modulated by dietary protein intake in the rat

Published online by Cambridge University Press:  09 March 2007

Suzanne Carreira
Affiliation:
Laboratoire de Biochimie et Biologie de la Nutrition, CNRS-URA 1820, Faculté des Sciences et Techniques de St-Jérôme, Service 342, 13397 Marseille Cedex 20, France
Christian Fueri
Affiliation:
Laboratoire de Biochimie et Biologie de la Nutrition, CNRS-URA 1820, Faculté des Sciences et Techniques de St-Jérôme, Service 342, 13397 Marseille Cedex 20, France
Jean-Claude Chaix
Affiliation:
Laboratoire de Biochimie et Biologie de la Nutrition, CNRS-URA 1820, Faculté des Sciences et Techniques de St-Jérôme, Service 342, 13397 Marseille Cedex 20, France
Antoine Puigserver
Affiliation:
Laboratoire de Biochimie et Biologie de la Nutrition, CNRS-URA 1820, Faculté des Sciences et Techniques de St-Jérôme, Service 342, 13397 Marseille Cedex 20, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Wistar rats fed on either a high-protein or a protein-free diet were examined to determine their pancreatic hydrolase mRNA stabilities in comparison with those of control animals receiving a standard diet. Actinomycin D was used to inhibit transcription and, after isolating the pancreatic RNA, the specific messengers were quantified by performing dot-blot hybridization with cDNA probes. In the rats fed on a high-protein diet, only the half-lives of anionic trypsinogen I and elastase I (EC 3.4.21.36) were affected. Interestingly, when rats were fed on the protein-free diet, most of the hydrolase mRNA half-lives showed changes, except that corresponding to lipase. In these rats, the half-life values of the mRNA coding for anionic trypsinogen I, chymotrypsinogen and procarboxypeptidase B increased, in sharp contrast with those of the amylase and elastase I mRNA, which decreased. These results strongly suggest that the mechanism whereby the biosynthesis of pancreatic hydrolases is regulated, depending on the presence or absence of proteins in the diet, is not unique and provide evidence that the stability of mRNA encoding most, if not all, the hydrolases in pancreatic cells is modulated by the dietary protein content.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Austin, S. A. & Kay, J. E. (1982) Translational regulation of protein synthesis in eucaryotes. Essays in Biochemistry 18, 80109.Google Scholar
Behrman, H. R. & Kare, M. R. (1969) Adaptation of canine pancreatic enzymes to diet composition. Journal of Physiology 205, 667676.CrossRefGoogle ScholarPubMed
Ben Abdeljlil, A. & Desnuelle, P. (1964) Sur l'adaptation des enzymes exocrines du pancréas à la composition du régime (On the adaptation of pancreatic exocrine enzymes to diet composition). Biochimica et Biophysica Acta 81, 136149.Google Scholar
Bonini, J. A. & Hofmann, C. (1991) A rapid, accurate, nonradioactive method for quantitating RNA on agarose gels. Biotechniques 11, 708710.Google ScholarPubMed
Chomczynski, P. & Sacchi, N. (1987) Single step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162, 156159.CrossRefGoogle ScholarPubMed
Czyzykkrzeska, M. F., Furnari, B. A., Lawson, E. E. & Millhorn, D. E. (1994) Hypoxia increases rate of transcription and stability of tyrosine hydroxylase messenger RNA in Pheochromocytoma. Journal of Biological Chemistry 269, 760764.CrossRefGoogle ScholarPubMed
Dagorn, J.-C. & Lahaie, R. G. (1981) Dietary regulation of pancreatic protein synthesis. I. Rapid specific modulation of enzyme synthesis by changes in dietary composition. Biochimica et Biophysica Acta 654, 111118.CrossRefGoogle ScholarPubMed
Dakka, N., Puigserver, A. & Wicker, C. (1990) Regulation by a protein-free carbohydrate-rich diet of rat pancreatic mRNAs encoding trypsin and elastase isozymes. Biochemical Journal 268, 471474.CrossRefGoogle Scholar
Dakka, N., Wicker, C. & Puigserver, A. (1988) Specific response of serine protease mRNA to a protein-free diet in the rat pancreas. European Journal of Biochemistry 174, 231236.CrossRefGoogle Scholar
Engler, E. M., Andose, J. D. & von R. Schleyer, P. (1973) Critical evaluation of molecular mechanics. Journal of American Chemical Society 95, 80058025.CrossRefGoogle Scholar
Gidez, L. I. (1973) Effect of dietary fat on pancreatic lipase levels in the rat. Journal of Lipid Research 14, 169177.CrossRefGoogle ScholarPubMed
Giorgi, D., Renaud, W., Bernard, J. P. & Dagorn, J.-C. (1985) Regulation of proteolytic enzyme activities and mRNA concentrations in rat pancreas by food content. Biochemical and Biophysical Research Communications 127, 337342.CrossRefGoogle ScholarPubMed
Grossman, M. I., Greengard, H. & Ivy, A. C. (1943) The effect of dietary composition on pancreatic enzymes. American Journal of Physiology 138, 676682.CrossRefGoogle Scholar
Hargrove, J. L., Hulsey, M. G., Schmidt, F. H. & Beale, E. G. (1990) A computer program for modeling the kinetics of gene expression. Biotechniques 8, 652654.Google ScholarPubMed
Hargrove, J. L. & Schmidt, F. H. (1989) The role of mRNA and protein stability in gene expression. FASEB Journal 3, 23602370.CrossRefGoogle ScholarPubMed
Mueckler, M. M., Merrill, M. J. & Pitot, H. C. (1983) Translational and pretranslational control of ornithine aminotransferase synthesis in rat liver. Journal of Biological Chemistry 258, 61096114.CrossRefGoogle ScholarPubMed
Pitot, H. C., Peraino, C., Lamar, C. & Kennan, A. L. (1965) Template stability of some enzymes in rat liver and hepatoma. Proceedings of the National Academy of Sciences USA 54, 845851.CrossRefGoogle ScholarPubMed
Reboud, J. P., Ben Abdeljlil, A. & Desnuelle, P. (1962) Variation de la teneur en enzymes du pancréas de rat en fonction de la composition des régimes (Dietary modulation of enzyme levels in the rat pancreas). Biochimica et Biophysica Acta 58, 326337.CrossRefGoogle Scholar
Reboud, J. P., Marchis-Mouren, G., Paséro, L., Cozzone, A. & Desnuelle, P. (1966) Adaptation de la vitesse de biosynthèse de l'amylase pancréatique et du chymotrypsinogène à des régimes riches en amidon ou en protéines (Adaptation of pancreatic amylase and chymotrypsinogen rates of biosynthesis to high-protein diets or high-carbohydrate diets). Biochimica et Biophysica Acta 117, 351367.CrossRefGoogle Scholar
Reich, E. (1963) Biochemistry of actinomycins. Cancer Research 23, 14281441.Google ScholarPubMed
Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989) Molecular Cloning, A Laboratory Manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.Google Scholar
Scheele, G. A. (1986). Regulation of the gene expression in the exocrine pancreas. In The Exocrine Pancreas: Biology, Pathology and Diseases, pp. 5568. [Go, V. L. W. editor]. New York: Raven Press.Google Scholar
Schick, J., Verspohl, R., Kern, H. & Scheele, G. (1984) Two distinct adaptative responses in the synthesis of exocrine pancreatic enzymes to inverse changes in protein and carbohydrate in the diet. American Journal of Physiology 247, G611G616.Google ScholarPubMed
Wicker, C. & Puigserver, A. (1987) Effects of inverse changes in dietary lipid and carbohydrate on the synthesis of some pancreatic secretory proteins. European Journal of Biochemistry 162, 2530.CrossRefGoogle ScholarPubMed
Wicker, C., Puigserver, A. & Scheele, G. A. (1984) Dietary regulation of levels of active mRNA coding for amylase and serine protease zymogens in the rat pancreas. European Journal of Biochemistry 139, 381387.CrossRefGoogle ScholarPubMed
Wicker, C., Scheele, G. A. & Puigserver, A. (1983) Adaptation au régime alimentaire du niveau des ARNm codant pour l'amylase et les protéases à sérine pancréatiques chez le rat (Dietary adaptation of the levels of mRNA encoding pancreatic amylase and serine proteases in the rat). Compte Rendu Académie des Sciences Paris 297, 281285.Google Scholar
Wicker, C., Scheele, G. A. & Puigserver, A. (1988) Pancreatic adaptation to dietary lipids is mediated by changes in lipase mRNA. Biochimie 70, 12771283.CrossRefGoogle ScholarPubMed
Zar, J. H. (1984) Biostatistical Analysis, pp. 718720. Englewood Cliffs: Prentice Hall.Google Scholar