Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-08T10:19:14.215Z Has data issue: false hasContentIssue false

Somatomedin-C and zinc status in rats as affected by Zn, protein and food intake

Published online by Cambridge University Press:  09 March 2007

Zafrallah T. Cossack
Affiliation:
The Veterans Administration Medical Center, Medical Research (1.51), Allen Park, Michigan 48101, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The objective of the present experiment was to study the level of plasma somatomedin-C (SM-C) and the status of zinc in rats as affected by three levels of Zn given in combinations with two levels of protein.

2. Six groups of rats were fed, for 21 d, on six different diets based on combinations of two levels of dietary protein (low protein, 75 g/kg; high protein, 200 g/kg) and three levels of zinc (low Zn, 0.9 pglkg; moderate Zn, 55 pg/kg; high Zn, 110 pglkg). All groups were pair-fed with the group receiving the low-Zn-low-protein diet. An additional group of six rats served as an ad lib.-fed control group and was fed on a diet that contained 55 pg Zn/kg and 200 g protein/kg ad lib.

3. Body-weight gain and food intake were recorded daily. Rats were killed at the end of the experimental period (21 d). Zn was assayed in plasma, tibia and liver by atomic absorption technique. Plasma SM-C was assayed by radioimmunoassay.

4. In rats given the low-Zn-low-protein diet, the level of plasma SM-C increased in response to the increase in the amount of Zn or Zn and protein in the diet. However, no change was observed when the level of protein alone was increased.

5. Among all groups tested, adlib.-fed rats showed the highest level of plasma SM-C. Thus it may be concluded that a balanced diet combined with adequate food intake is necessary to maintain an optimal level of plasma SM-C.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1986

References

REFERENCES

Boloorforooshan, M. & Markakis, P. (1977). Journal of Food Science 42, 16711672.Google Scholar
Collip, P. J., Castro-Managa, M. C., Petrovic, M., Thomas, J., Cheruvansky, T., Yao Chen, S. & Sassman, H. (1982). Annals of Nutrition and Metabolism 26, 287290.Google Scholar
Cossack, Z. T. (1984). Experientia 40, 498500.Google Scholar
Cossack, Z. T. & Prasad, A. S. (1983). Nutrition Research 3, 2331.Google Scholar
Cossack, Z. T. & Weber, C. W. (1983). Nutrition Reports International 28, 203217.Google Scholar
Costin, G., Kogut, M. D., Phillips, L. S. & Daughaday, W. H. (1976). Journal of Clinical Endocrinology and Metabolism 42, 370375.Google Scholar
Daughaday, W. H., Hall, K., Raben, M. S., Salmon, W. D., van den Brande, J. L. & van Wyke, J. J. (1972). Nature 235, 107108.Google Scholar
Furlanetto, R. W., Underwood, L. E., van Wyke, J. J. & D'Ercole, A. J. (1977). Journal of Clinical Investigation 60, 648657.Google Scholar
Hintz, R. L., Suskind, R., Amatayakul, K., Thanagkul, O. & Olson, R. (1978). Journal of Pediatrics 29, 153156.Google Scholar
Hsue, J. M. & Anthony, W. L. (1975). Journal of Nutrition 105, 2630.CrossRefGoogle Scholar
Laron, Z., Pertzelan, A. & Mannheimer, S. (1966). Israel Journal of Medicine 2, 152155.Google Scholar
Magee, A. C. & Grainger, F. P. (1979). Nutrition Reports International 20, 771776.Google Scholar
Pedersen, B. & Eggum, B. O. (1983). Nutrition Reports International 27, 441453.Google Scholar
Phillips, L. S. & Orawski, A. T. (1977). Diabetes 26, 864869.Google Scholar
Phillips, L. S., Orawski, A. T. & Belosky, D. C. (1978). Endocrinology 103, 121127.CrossRefGoogle Scholar
Phillips, L. S. & Young, H. S. (1976 a). Diabetes 25, 516526.Google Scholar
Phillips, L. S. & Young, H. S. (1976 b). Endocrinology 99, 304314.Google Scholar
Prasad, A. S. & Cossack, Z. T. (1984). Annals of Internal Medicine 100, 367371.Google Scholar
Prewitt, T. E., D'Ercole, A. T., Switzer, B. R. & van Wyke, J. J. (1982). Journal of Nutrition 112, 144150.Google Scholar
Reeves, R. D., Dickinson, L., Lee, J., Kilgore, B., Branham, B. & Elders, M. J. (1979). Journal of Nutrition 109, 603620.Google Scholar
Salmon, W. D. Jr & Daughaday, W. H. (1957). Journal of Laboratory and Clinical Medicine 49, 825836.Google Scholar
Sandstead, H. H. (1973). American Journal of Clinical Nutrition 26, 790793.CrossRefGoogle Scholar
Sandström, B. & Cederblad, A. (1980). American Journal of Clinical Nutrition 33, 17781783.Google Scholar
Snedecor, G. W. & Cochran, W. G. (1968). Statistical Methods, pp. 150162. Ames, Iowa: Iowa State University Press.Google Scholar
Takano, K., Hizuka, N., Kawai, K. & Shizume, K. (1978). Acta Endocrinologica 87, 485494.Google Scholar
Tanner, J. M., Whitehouse, R. H. & Takaishi, M. (1966). Archives of Diseases of Children 41, 545551.Google Scholar
Van Campen, D. & House, W. A. (1974). Journal of Nutrition 104, 8491.Google Scholar
Van den Brande, J. L. & Du Caju, M. V. L. (1974). Acta Endocrinologica 75, 233242.Google Scholar
Wallwork, J. C., Johnson, L. K., Milne, D. B. & Sandstead, H. H. (1983). Journal of Nutrition 113, 13071320.CrossRefGoogle Scholar
Walraven, P. A. & Hambidge, K. M. (1983). American Journal of Clinical Nutrition 29, 11141121.CrossRefGoogle Scholar
Whitehouse, R. C., Prasad, A. S., Rabbani, P. I. & Cossack, Z. T. (1982). Clinical Chemistry 28, 475480.CrossRefGoogle Scholar
Yeh, J. & Aloia, J. F. (1978). Metabolism 27, 507509.CrossRefGoogle Scholar